留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

装配式空心板桥改进型铰缝结合面受力性能

黄宛昆 吴庆雄 王渠

黄宛昆, 吴庆雄, 王渠. 装配式空心板桥改进型铰缝结合面受力性能[J]. 交通运输工程学报, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011
引用本文: 黄宛昆, 吴庆雄, 王渠. 装配式空心板桥改进型铰缝结合面受力性能[J]. 交通运输工程学报, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011
HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011
Citation: HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011

装配式空心板桥改进型铰缝结合面受力性能

doi: 10.19818/j.cnki.1671-1637.2022.06.011
基金项目: 

国家重点研发计划 2017YFE0130300

国家自然科学基金项目 51808126

详细信息
    作者简介:

    黄宛昆(1982-),男,安徽庐江人,福州大学实验师,工学博士,从事桥梁工程研究

    通讯作者:

    吴庆雄(1973-),男,福建南靖人,福州大学研究员,工学博士

  • 中图分类号: U443.3

Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge

Funds: 

National Key Research and Development Program of China 2017YFE0130300

National Natural Science Foundation of China 51808126

More Information
  • 摘要: 为了改进装配式空心板桥横向受力性能,设计了在铰缝结合面上利用连续钢板代替间断钢筋和改进铰缝结构与填充材料的2种铰缝改进措施,采用局部模型试验计算了铰缝结合面的法向和切向强度,提出了采用间断钢筋和连续钢板的铰缝结合面抗弯、抗剪承载能力计算公式。研究结果表明:局部模型试验值与公式计算值的误差不超过10%,表明所提出的抗弯、抗剪承载能力计算公式可以准确地计算采用连续钢板的铰缝结合面承载能力;未采用结合面钢筋的深铰缝,结合面法向强度为1.29 MPa,为弱侧混凝土轴心抗拉强度的39%,结合面切向强度为0.45 MPa,为弱侧混凝土轴心抗压强度的1.5%;采用间断钢筋和连续钢板的铰缝结合面法向强度较未采用结合面钢筋的铰缝分别提高了98%和73%,结合面切向强度分别提高了71%和78%;普通混凝土浅铰缝结合面法向强度为1.30 MPa,为弱侧混凝土轴心抗拉强度的40%,结合面切向强度为0.33 MPa,为弱侧混凝土轴心抗压强度的1.1%;采用UHPC填充深、浅铰缝的结合面法向强度较普通混凝土填充深、浅铰缝分别提高了13%和21%,结合面切向强度分别提高了64%和94%。

     

  • 图  1  改进结合面钢筋的布置

    Figure  1.  Improved arrangement of junction surface steel bars

    图  2  改进铰缝结构形式与填充材料

    Figure  2.  Improved hinge joint structure and grouting material

    图  3  试验构件尺寸(单位:cm)

    Figure  3.  Dimensions of test modes (unit: cm)

    图  4  加载方案和加载装置(单位:cm)

    Figure  4.  Loading schemes and loading devices (unit: cm)

    图  5  结合面弯曲破坏形态

    Figure  5.  Flexural failure forms of junction surface

    图  6  改进钢筋布置的ftftw的比值

    Figure  6.  Ratios of ft to ftw with improved steel bars arrangement

    图  7  改进钢筋布置的结合面剪切破坏形态

    Figure  7.  Shearing failure forms of junction surface with improved steel bars arrangement

    图  8  改进钢筋布置的fvfcw的比值

    Figure  8.  Ratios of fv to fcw with improved steel bars arrangement

    图  9  改进铰缝结构的结合面弯曲破坏形态

    Figure  9.  Flexural failure forms of junction surface with improved hinge joint structure

    图  10  改进铰缝结构的ftftw的比值

    Figure  10.  Ratios of ft to ftw with improved hinge joint structure

    图  11  改进铰缝结构的结合面剪切破坏形态

    Figure  11.  Shearing failure forms of junction surface with improved hinge joint structure

    图  12  改进铰缝结构的fvfcw的比值

    Figure  12.  Ratios of fv to fcw with improved joint structure

    图  13  钢板与混凝土挤压力

    Figure  13.  Extrusion forces between steel plate and concrete

    图  14  公式计算结果与模型试验结果比较

    Figure  14.  Comparison between formula calculation results and model test results

    图  15  公式计算结果与模型试验结果比较

    Figure  15.  Comparison between formula calculation results and model test results

    表  1  改进结合面钢筋布置的局部模型试验

    Table  1.   Local model test of improved arrangement of junction surface steel bars

    分组编号 抗弯/抗剪 钢筋布置
    WS-1 抗弯 无结合面钢筋
    WS-2 采用间断钢筋
    WS-3 采用连续钢板
    JS-1 抗剪 无结合面钢筋
    JS-2 采用间断钢筋
    JS-3 采用连续钢板
    下载: 导出CSV

    表  2  改进铰缝结构的局部模型试验

    Table  2.   Local model test of improved hinge joint structure

    分组编号 抗弯/抗剪 铰缝结构
    WS-4 抗弯 NC浅铰缝
    WS-5 UHPC深铰缝
    WS-6 UHPC浅铰缝
    JS-4 抗剪 NC浅铰缝
    JS-5 UHPC深铰缝
    JS-6 UHPC浅铰缝
    下载: 导出CSV

    表  3  改进钢筋布置的抗弯试验结果

    Table  3.   Flexural test result with improved steel bar arrangement

    试件编号 Mc/(kN·m) ft/MPa ft/ftw
    实测值 有效值 实测值 有效值
    WS-1-1 10.3 1.42 1.29 0.43 0.39
    WS-1-2 10.0 1.38 0.42
    WS-1-3 9.5 1.31 0.40
    WS-2-1 17.2 2.37 2.56 0.72 0.70
    WS-2-2 18.5 2.55 0.77
    WS-2-3 20.0 2.75 0.84
    WS-3-1 14.5 2.00 2.23 0.62 0.57
    WS-3-2 15.0 2.07 0.64
    WS-3-3 18.0 2.48 0.77
    下载: 导出CSV

    表  4  改进钢筋布置的抗剪试验结果

    Table  4.   Shearing test results with improved steel bars arrangement

    试件编号 Vc/kN fv/MPa fv/fcw
    实测值 有效值 实测值 有效值
    JS-1-1 75 0.52 0.45 0.018 0.015
    JS-1-2 66 0.46 0.016
    JS-1-3 70 0.49 0.017
    JS-2-1 115 0.80 0.77 0.028 0.027
    JS-2-2 126 0.88 0.030
    JS-2-3 116 0.81 0.028
    JS-3-1 120 0.83 0.80 0.029 0.028
    JS-3-2 144 1.00 0.036
    JS-3-3 130 0.90 0.037
    下载: 导出CSV

    表  5  改进铰缝结构的抗弯试验结果

    Table  5.   Flexural test result with improved hinge joint structure

    试件编号 Mc/(kN·m) ft/MPa ft/ftw
    实测值 有效值 实测值 有效值
    WS-4-1 6.0 1.33 1.30 0.40 0.40
    WS-4-2 7.0 1.55 0.47
    WS-4-3 7.2 1.60 0.49
    WS-5-1 11.3 1.56 1.46 0.47 0.44
    WS-5-2 10.7 1.47 0.45
    WS-5-3 11.1 1.53 0.46
    WS-6-1 7.5 1.66 1.57 0.51 0.48
    WS-6-2 8.5 1.89 0.57
    WS-6-3 7.5 1.66 0.51
    下载: 导出CSV

    表  6  改进铰缝结构的抗剪试验结果

    Table  6.   Shearing test result with improved hinge joint structure

    试件编号 Vc/(kN·m) fv/MPa fv/fcw
    实测值 有效值 实测值 有效值
    JS-4-1 35 0.34 0.33 0.012 0.011
    JS-4-2 43 0.41 0.014
    JS-4-3 40 0.38 0.013
    JS-5-1 112 0.78 0.74 0.027 0.026
    JS-5-2 125 0.87 0.030
    JS-5-3 113 0.78 0.027
    JS-6-1 68 0.65 0.64 0.023 0.022
    JS-6-2 73 0.70 0.024
    JS-6-3 78 0.75 0.026
    下载: 导出CSV
  • [1] HUSSEIN H H, SARGAND S M, KHOURY I, et al. Environment-induced behavior of transverse tie bars in adjacent prestressed box-girder bridges with partial depth shear keys[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 1-13.
    [2] 陈康明, 吴庆雄, 黄宛昆, 等. 结合面底部带门式钢筋的铰接空心板桥受力性能参数分析[J]. 公路交通科技, 2016, 33(8): 65-75. doi: 10.3969/j.issn.1002-0268.2016.08.011

    CHEN Kang-ming, WU Qing-xiong, HUANG Wan-kun, et al. Parameter analysis on mechanical property of hinged hollow slab bridge with gate-type steel bars at bottom of junction surface[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8): 65-75. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.08.011
    [3] 吴庆雄, 黄宛昆, 王渠, 等. 新型装配式倒T形空心板桥受力性能[J]. 交通运输工程学报, 2019, 19(4): 12-23. doi: 10.3969/j.issn.1671-1637.2019.04.002

    WU Qing-xiong, HUANG Wan-kun, WANG Qu, et al. Mechanical property of new type of prefabricated inverted T-shape voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 12-23. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.002
    [4] DUAN Lan, WANG Chun-sheng, WANG Shi-chao, et al. Full-scale bending test study for PC hollow slab girder using UHPFRC and composite reinforcement techniques[J]. Journal of Bridge Engineering, 2020, 25(12): 04020103. doi: 10.1061/(ASCE)BE.1943-5592.0001638
    [5] 储兵. 空心板梁桥深铰缝受力性能研究[J]. 公路, 2021, 66(11): 178-181. doi: 10.3969/j.issn.1001-7372.2021.11.015

    CHU Bing. Research on mechanical performance of full-depth shear key of hollow slab girder bridge[J]. Highway, 2021, 66(11): 178-181. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.015
    [6] 吴庆雄, 陈悦驰, 陈康明. 结合面底部带门式钢筋的铰接空心板破坏模式分析[J]. 交通运输工程学报, 2015, 15(5): 15-25. doi: 10.3969/j.issn.1671-1637.2015.05.003

    WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 15-25. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.05.003
    [7] 项长生, 党聪, 周宇. 基于铰缝损伤度的空心板桥铰缝损伤识别方法[J]. 防灾减灾工程学报, 2022, 42(3): 523-533. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202203012.htm

    XIANG Chang-sheng, DANG Cong, ZHOU Yu. Hinge joint damage identification method of hollow slab bridge based on hinge joint damage degree[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 523-533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202203012.htm
    [8] 王渠, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式试验研究[J]. 工程力学, 2014, 31(增): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm

    WANG Qu, WU Qing-xiong, CHEN Bao-chun. Test study on the failure mode of hinged joint in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31(S): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm
    [9] 钱寅泉, 周正茂, 葛玮明, 等. 基于相对位移法的铰缝破损程度检测[J]. 公路交通科技, 2012, 29(7): 76-81. doi: 10.3969/j.issn.1002-0268.2012.07.013

    QIAN Yin-quan, ZHOU Zheng-mao, GE Wei-ming, et al. Deterioration inspection of hinge joints based on relative displacement method[J]. Journal of Highway and Transportation Research and Development, 2012, 29(7): 76-81. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.07.013
    [10] 陈悦驰, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式有限元分析[J]. 工程力学, 2014, 31(增): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1012.htm

    CHEN Yue-chi, WU Qing-xiong, CHEN Bao-chun. Failure mode of hinged joint in assembly voided slab bridge by finite element analysis[J]. Engineering Mechanics, 2014, 31(S): 51-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1012.htm
    [11] HUSSEIN H H, WALSH K K, SARGAND S M, et al. Interfacial properties of ultrahigh- performance concrete and high-strength concrete bridge connections[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04015208. doi: 10.1061/(ASCE)MT.1943-5533.0001456
    [12] HUSSEIN H H, SARGAND S M, AL-JHAYYISH A K, et al. Contribution of transverse tie bars to load transfer in adjacent prestressed box-girder bridges with partial depth shear key[J]. Journal of Performance of Constructed Facilities, 2017, 31(2): 04016100. doi: 10.1061/(ASCE)CF.1943-5509.0000973
    [13] ZHOU Xiang-ming, MICKLEBOROUGH N, LI Zong-jin. Shear strength of joints in precast concrete segmental bridges[J]. ACI Structural Journal, 2005, 102(1): 3-11.
    [14] HUSSEIN H H, SARGAND S M, AL RIKABI F T, et al. Laboratory evaluation of ultrahigh-performance concrete shear key for prestressed adjacent precast concrete box girder bridges[J]. Journal of Bridge Engineering, 2017, 22(2): 1-13.
    [15] HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast prestressed, adjacent box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(4): 04018009. doi: 10.1061/(ASCE)BE.1943-5592.0001220
    [16] ISSA M A, VALLE C L, ABDALLA H A, et al. Performance of transverse joint grout materials in full-depth precast concrete bridge deck systems[J]. PCI Journal, 2003, 48(4): 92-103. doi: 10.15554/pcij.07012003.92.103
    [17] SEMENDARY A A, WALSH K K, STEINBERG E P. Early-age behavior of an adjacent prestressed concrete box-beam bridge containing UHPC shear keys with transverse dowels[J]. Journal of Bridge Engineering, 2017, 22(5): 04017007. doi: 10.1061/(ASCE)BE.1943-5592.0001034
    [18] 施颖, 孟科坦, 罗东海. 基于ABAQUS分析结合面粗糙度对UHPC铰缝接触面损伤的影响[J]. 浙江工业大学学报, 2019, 47(1): 13-17. doi: 10.3969/j.issn.1006-4303.2019.01.003

    SHI Ying, MENG Ke-tan, LUO Dong-hai. The influence of roughness of bonding surfaces on the contact surface damage of hinge joints with UHPC based on ABAQUS[J]. Journal of Zhejiang University of Technology, 2019, 47(1): 13-17. (in Chinese) doi: 10.3969/j.issn.1006-4303.2019.01.003
    [19] 张阳, 王兴旺. UHPC加固RC结构交界面抗剪性能试验研究[J]. 中外公路, 2017, 37(2): 105-111. doi: 10.14048/j.issn.1671-2579.2017.02.024

    ZHANG Yang, WANG Xing-wang. Experimental study on shear behavior of interface of RC structure strengthened by UHPC[J]. Journal of China and Foreign Highway, 2017, 37(2): 105-111. (in Chinese) doi: 10.14048/j.issn.1671-2579.2017.02.024
    [20] 赵志方, 赵国藩, 刘健. 新老混凝土粘结抗拉性能的试验研究[J]. 建筑结构学报, 2001, 22(2): 51-56. doi: 10.3321/j.issn:1000-6869.2001.02.009

    ZHAO Zhi-fang, ZHAO Guo-fan, LIU Jian. Experimental study on adhesive tensile performance of young on old concrete[J]. Journal of Building Structures, 2001, 22(2): 51-56. (in Chinese) doi: 10.3321/j.issn:1000-6869.2001.02.009
    [21] HANNA K E, MORCOUS G, TADROS M K. Transverse post-tensioning design and detailing of precast prestressed concrete adjacent-box-girder bridges[J]. PCI Journal, 2009, 54(4): 160-174.
    [22] 项贻强, 邢骋, 邵林海, 等. 横向加固空心板梁桥荷载横向分布计算方法与试验研究[J]. 中国公路学报, 2013, 26(2): 63-76. doi: 10.3969/j.issn.1001-7372.2013.02.010

    XIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Calculating method and experimental research on lateral load distribution of transversely strengthened hollow slab bridge[J]. China Journal of Highway and Transport, 2013, 26(2): 63-76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.010
    [23] 黄海新, 安帅锟, 程寿山. 基于反拱行为的空心板桥横向体外预应力加固模型[J]. 公路交通科技, 2018, 35(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201801008.htm

    HUANG Hai-xin, AN Shuai-kun, CHENG Shou-shan. A lateral external prestress reinforcement model for hollow slab bridge based on arching behavior[J]. Journal of Highway and Transportation Research and Development, 2018, 35(1): 55-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201801008.htm
    [24] 吴庆雄, 黄宛昆, 陈宝春, 等. 结合面底部设开孔钢板的铰接空心板力学性能[J]. 交通运输工程学报, 2017, 17(4): 45-54. doi: 10.3969/j.issn.1671-1637.2017.04.005

    WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, et al. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.005
    [25] 金辉, 徐岳, 姜凤华, 等. 锚贴U形钢板-混凝土组合加固RC梁的抗弯试验[J]. 中国公路学报, 2020, 33(9): 206-214. doi: 10.3969/j.issn.1001-7372.2020.09.020

    JIN Hui, XU Yue, JIANG Feng-hua, et al. Bending behavior experiment of RC beams with U-shaped steel and concrete composite reinforcement[J]. China Journal of Highway and Transport, 2020, 33(9): 206-214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.020
    [26] LABIB S N, EL-GENDY M G, EL-SALAKAWY E F. Adjacent concrete box girders transversely post-tensioned at top flanges only: experimental investigation[J]. Journal of Bridge Engineering, 2021, 26(4): 04021017. doi: 10.1061/(ASCE)BE.1943-5592.0001699
    [27] SARGAND S M, WALSH K K, HUSSEIN H H, et al. Modeling the shear connection in adjacent box-beam bridges with ultrahigh-performance concrete joints. Ⅱ: load transfer mechanism[J]. Journal of Bridge Engineering, 2017, 22(8): 04017044, 1-11.
    [28] ZHANG Shou-qi, DU Shi-zhao, ANG Yuan, et al. Study on performance of prestressed concrete hollow slab beams reinforced by grouting with ultra-high performance concrete[J]. Case Studies in Construction Materials, 2021, 15(12): e00583.
    [29] SEMENDARY A A, STEINBERG E P, WALSH K K, et al. Live-load moment-distribution factors for an adjacent precast prestressed concrete box beam bridge with reinforced UHPC shear key connections[J]. Journal of Bridge Engineering, 2017, 22(11): 04017088. doi: 10.1061/(ASCE)BE.1943-5592.0001127
    [30] STEINBERG E P, SEMENDARY A A. Evaluation of transverse tie rods in a 50-year-old adjacent prestressed concrete box beam bridge[J]. Journal of Bridge Engineering, 2017, 22(3), 05016010. doi: 10.1061/(ASCE)BE.1943-5592.0001001
    [31] YAMANE T, TADROS M K, ARUMUGASAAMY P. Short to medium span precast prestressed concrete bridges in Japan[J]. PCI Journal, 1994, 39(2): 74-100. doi: 10.15554/pcij.03011994.74.100
    [32] 叶见曙, 刘九生, 俞博, 等. 空心板混凝土铰缝抗剪性能试验研究[J]. 公路交通科技, 2013, 30(6): 33-39. doi: 10.3969/j.issn.1002-0268.2013.06.007

    YE Jian-shu, LIU Jiu-sheng, YU Bo, et al. Experiment on shear property of hinge joints of concrete hollow slab[J]. Journal of Highway and Transportation Research and Development, 2013, 30(6): 33-39. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.06.007
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  122
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回