留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢箱梁桥面沥青混合料燃烧温度荷载与效应分析

李阳 王佐才 王昌建 韩光兆

李阳, 王佐才, 王昌建, 韩光兆. 钢箱梁桥面沥青混合料燃烧温度荷载与效应分析[J]. 交通运输工程学报, 2022, 22(6): 182-192. doi: 10.19818/j.cnki.1671-1637.2022.06.012
引用本文: 李阳, 王佐才, 王昌建, 韩光兆. 钢箱梁桥面沥青混合料燃烧温度荷载与效应分析[J]. 交通运输工程学报, 2022, 22(6): 182-192. doi: 10.19818/j.cnki.1671-1637.2022.06.012
LI Yang, WANG Zuo-cai, WANG Chang-jian, HAN Guang-zhao. Temperature load and effect analysis of asphalt mixture combustion on steel box girder bridge deck[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 182-192. doi: 10.19818/j.cnki.1671-1637.2022.06.012
Citation: LI Yang, WANG Zuo-cai, WANG Chang-jian, HAN Guang-zhao. Temperature load and effect analysis of asphalt mixture combustion on steel box girder bridge deck[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 182-192. doi: 10.19818/j.cnki.1671-1637.2022.06.012

钢箱梁桥面沥青混合料燃烧温度荷载与效应分析

doi: 10.19818/j.cnki.1671-1637.2022.06.012
基金项目: 

国家自然科学基金项目 51922036

安徽省重点研发计划 JZ2018AKKG0333

中央高校基本科研业务费专项资金项目 JZ2020HGPB0117

详细信息
    作者简介:

    李阳(1991-), 男, 辽宁鞍山人, 合肥工业大学工学博士研究生, 从事桥梁结构防灾减灾研究

    王佐才(1982-), 男, 湖南双峰人, 合肥工业大学教授, 工学博士

  • 中图分类号: U448.213

Temperature load and effect analysis of asphalt mixture combustion on steel box girder bridge deck

Funds: 

National Natural Science Foundation of China 51922036

Key Research and Development Project of Anhui Province JZ2018AKKG0333

Fundamental Research Funds for the Central Universities JZ2020HGPB0117

More Information
  • 摘要: 为研究在火灾作用下钢箱梁与桥面铺装结构热效应,建立了小尺度钢桥面燃烧试验台,获取了油料火灾作用下沥青铺装层的上表面、中部和下表面温度数据;针对上表面温度数据,拟合得到了一条基于燃烧试验数据的升温曲线,与ISO 834标准升温曲线进行对比,并对小尺度试验的温度场进行了数值模拟验证;建立了11.25 m×3.60 m的钢箱梁桥有限元模型,获取了桥梁在跨中、支座附近和全跨火灾工况下的应力和变形特征。研究结果表明:在试验拟合升温曲线的作用下,二维数值模拟试件的中部温度260.70 ℃和底部温度89.38 ℃与试验数据248.90 ℃和82.59 ℃相近,且升温趋势较一致,说明温度场数值模拟结果可靠;火灾荷载作用区域钢箱梁顶板温度下降最高可达60.91%,表明沥青混合料铺装层能在一定程度上阻挡温度传递;跨中、支座火灾工况下钢箱梁最大Mises应力均出现在火荷载向低温扩散传播的冷热交替区域;跨中火灾工况在火荷载区域出现上挠变形,而支座火灾工况分别在火荷载区域和跨中区域出现上挠和下挠变形;全跨火灾Mises应力分布较均匀,跨中下挠变形严重;3种火灾模式下,基于试验拟合升温曲线的应力和变形数据均滞后且低于ISO 834标准升温曲线。

     

  • 图  1  燃烧试验台

    Figure  1.  Test bench of combustion

    图  2  燃烧的3个阶段

    Figure  2.  Three stages of combustion

    图  3  二维传热模型

    Figure  3.  Two dimensional model of heat transfer

    图  4  试件上表面的温度荷载曲线

    Figure  4.  Temperature load curve of specimen top surface

    图  5  试件中部和底部钢板的传热温度

    Figure  5.  Steel heat transfer temperature of specimen middle surface and bottom

    图  6  钢箱梁有限元简化模型

    Figure  6.  Finite element simplified model of steel box girder

    图  7  钢箱梁顶板中轴线温度与温度梯度分布

    Figure  7.  Distributions of temperature and temperature gradient along central axis of steel box girder roof

    图  8  厚度方向测点

    Figure  8.  Measuring points in thickness direction

    图  9  T1和T2的温度结果

    Figure  9.  Temperature results at T1 and T2

    图  10  沥青混合料的弹性模量拟合曲线

    Figure  10.  Elastic modulus fitting curve of asphalt mixture

    图  11  折减系数曲线

    Figure  11.  Curves of reduction factors

    图  12  跨中失火Mises应力分布

    Figure  12.  Mises stress distributions under midspan fire

    图  13  支座失火Mises应力分布

    Figure  13.  Mises stress distributions under pedestal fire

    图  14  全跨失火Mises应力分布

    Figure  14.  Mises stress distributions under full-span fire

    图  15  应力时程曲线

    Figure  15.  Time history curves of stress

    表  1  不同工况的油料燃烧时间

    Table  1.   Oil burning times under different conditions

    材料类型 油料使用量/mL 燃烧时长/min
    沥青混合料试件 2 900 45
    纯庚烷 2 900 21
    下载: 导出CSV

    表  2  热学参数

    Table  2.   Thermal parameters

    结构类型 ρ/(kg·m-3) k/[W·(m·℃)-1] c/[J·(kg·℃)-1]
    试件 2 425 0.87 990
    钢板 7 854
    空气 1.225 0.024 1 006.43
    下载: 导出CSV

    表  3  钢箱梁桥模型的结构组成

    Table  3.   Structure composition of steel box girder bridge model

    结构名称 尺寸/mm
    铺装层 上层 35
    下层 30
    钢箱梁 顶板厚度 16
    U形加劲肋 上口宽度 300
    下口宽度 180
    高度 300
    间距 600
    板厚 8
    下载: 导出CSV

    表  4  火灾荷载工况布置

    Table  4.   Arrangement of fire load cases

    工况 位置 荷载分类 火源图示 功率/MW 特征尺寸/m2
    1 跨中 ISO 834 15 2.52×2.52
    2 试验拟合模型
    3 支座 ISO 834 15 2.52×2.52
    4 试验拟合模型
    5 全跨 ISO 834 152 11.25×3.60
    6 试验拟合模型
    下载: 导出CSV

    表  5  最大Mises应力和变形

    Table  5.   Maximum Mises stresses and deformations

    工况 最大Mises应力/MPa 变形
    类型 最大变形/mm 位置
    1 342.563 上挠 18.141 跨中
    2 342.472 上挠 15.250 跨中
    3 342.348 上挠 5.876 支座附近
    下挠 -15.987 跨中
    4 342.143 上挠 2.609 支座附近
    下挠 -14.924 跨中
    5 330.607 下挠 -91.186 跨中
    6 321.903 下挠 -61.684 跨中
    下载: 导出CSV
  • [1] MA Ru-jin, CUI Chuan-jie, MA Ming-lei, et al. Numerical simulation and simplified model of vehicle-induced bridge deck fire in the full-open environment considering wind effect[J]. Structure and Infrastructure Engineering, 2021, 17(12): 1698-1709. doi: 10.1080/15732479.2020.1832535
    [2] BOLINA F L, RODRIGUES J P C. Numerical study and proposal of new design equations for steel decking concrete slabs subjected to fire[J]. Engineering Structures, 2022, 253: 113828. doi: 10.1016/j.engstruct.2021.113828
    [3] AHMED A, KHARNOOB M, AKHMADEEV R, et al. Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures[J]. Structural Engineering and Mechanics, 2022, 83(4): 551-561.
    [4] SUNTHARALINGAM T, UPASIRI I, NAGARATNAM B, et al. Finite element modelling to predict the fire performance of bio-inspired 3D-printed concrete wall panels exposed to realistic fire[J]. Buildings, 2022, 12(2): 111. doi: 10.3390/buildings12020111
    [5] 王选富, 刘子利, 李凡, 等. 火灾下预应力混凝土箱梁温度场研究[J]. 土木工程, 2019, 8(7): 1229-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202202027.htm

    WANG Xuan-fu, LIU Zi-li, LI Fan, et al. Study on temperature field of prestressed concrete box girder under fire[J]. Hans Journal of Civil Engineering, 2019, 8(7): 1229-1236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202202027.htm
    [6] PAYÁ-ZAFORTEZA I, GARLOCK M E M. A numerical investigation on the fire response of a steel girder bridge[J]. Journal of Constructional Steel Research, 2012, 75: 93-103. doi: 10.1016/j.jcsr.2012.03.012
    [7] AZIZ E M, KODUR V K. An approach for evaluating the residual strength of fire exposed bridge girders[J]. Journal of Constructional Steel Research, 2013, 88: 34-42. doi: 10.1016/j.jcsr.2013.04.007
    [8] AZIZ E M, KODUR V K, GLASSMAN J D, et al. Behavior of steel bridge girders under fire conditions[J]. Journal of Constructional Steel Research, 2015, 106: 11-22. doi: 10.1016/j.jcsr.2014.12.001
    [9] 张岗, 贺拴海, 王翠娟. 焰流效应下混凝土空心薄壁墩火温时变分布[J]. 交通运输工程学报, 2014, 14(1): 26-34. http://transport.chd.edu.cn/article/id/201401004

    ZHANG Gang, HE Shuan-hai, WANG Cui-juan. Time-dependent variation distribution of fire temperature for concrete hollow thin-walled pier affected by flame fluid[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 26-34. (in Chinese) http://transport.chd.edu.cn/article/id/201401004
    [10] 张岗, 贺拴海, 侯炜, 等. 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报(自然科学版), 2018, 38(6): 1-10. doi: 10.3969/j.issn.1671-8879.2018.06.001

    ZHANG Gang, HE Shuan-hai, HOU Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 1-10. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.06.001
    [11] 张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001

    ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-11. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001
    [12] 宋超杰, 张岗, 贺拴海, 等. 钢-混凝土组合连续弯箱梁抗火性能与设计方法[J]. 交通运输工程学报, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010

    SONG Chao-jie, ZHANG Gang, HE Shuan-hai, et al. Fire resistance performance and design method of steel-concrete composite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.010
    [13] 杨丹, 廖健凯, 赵应. 基于ABAQUS的钢-混凝土组合桥抗火性能分析[J]. 火灾科学, 2020, 29(3): 150-161. https://www.cnki.com.cn/Article/CJFDTOTAL-HZKX202003003.htm

    YANG Dan, LIAO Jian-kai, ZHAO Ying. Finite element analysis on fire performance of steel-concrete composite bridges using ABAQUS[J]. Fire Safety Science, 2020, 29(3): 150-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZKX202003003.htm
    [14] 郝增恒, 王滔, 王民, 等. 钢桥面铺层温度场分析[J]. 公路交通科技, 2018, 35(11): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201811005.htm

    HAO Zeng-heng, WANG Tao, WANG Min, et al. Analysis on temperature field of steel bridge deck pavement[J]. Journal of Highway and Transportation Research and Development, 2018, 35(11): 36-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201811005.htm
    [15] 程怀磊, 刘黎萍, 孙立军. 沥青混合料铺装层现场模量探究——以钢桥面铺装为例[J]. 土木工程学报, 2020, 53(2): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202002012.htm

    CHENG Huai-lei, LIU Li-ping, SUN Li-jun. A case study on evaluating in-situ layer modulus of asphalt pavement[J]. China Civil Engineering Journal, 2020, 53(2): 119-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202002012.htm
    [16] ANASTASIO S, DE VISSCHER J, WAYMAN M, et al. Standardization of the environmental information for asphalt technologies[J]. Transportation Research Procedia, 2016, 14(6): 3542-3551.
    [17] 朱世峰, 罗国耀, 张毅, 等. 浇注式沥青施工期钢桥面板温度场研究与监测技术[J]. 桥梁建设, 2021, 51(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202103011.htm

    ZHU Shi-feng, LUO Guo-yao, ZHANG Yi, et al. Research on temperature field in steel deck plate during gussaphalt placement and monitoring techniques[J]. Bridge Construction, 2021, 51(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202103011.htm
    [18] 钱振东, 刘阳, 杨亚林, 等. 沥青混凝土高温摊铺下钢梁支座体系温度效应[J]. 中国公路学报, 2022, 35(8): 194-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208018.htm

    QIAN Zhen-dong, LIU Yang, YANG Ya-lin, et al. Temperature effect analysis of bridge bearings in a steel beam during high-temperature asphalt concrete pavement paving[J]. China Journal of Highway and Transport, 2022, 35(8): 194-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208018.htm
    [19] LIU Yang, QIAN Zhen-dong, HU Han-zhou. Thermal field characteristic analysis of steel bridge deck during high-temperature asphalt pavement paving[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2811-2821.
    [20] 杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5): 42-61. doi: 10.19818/j.cnki.1671-1637.2021.05.004

    YANG Xiao-long, SHEN Ai-qin, JIANG Yi-xin, et al. Review on nano clay modified asphalt based on flame retardant and smoke suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 42-61. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.004
    [21] QIU Jun-ling, YANG Tao, WANG Xiu-ling, et al. Review of the flame retardancy on highway tunnel asphalt pavement[J]. Construction and Building Materials, 2019, 195: 468-482.
    [22] 梁晓莉, 姜汶泉, 黄志义, 等. 沥青混合料燃烧试验研究[J]. 公路, 2007(10): 195-198. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200710046.htm

    LIANG Xiao-li, JIANG Wen-quan, HUANG Zhi-yi, et al. A study on asphalt mixture under combustion[J]. Highway, 2007(10): 195-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200710046.htm
    [23] MASOUMI A P, TAJALLI-ARDEKANI E, GOLNESHAN A A. Investigation on performance of an asphalt aolar collector: CFD analysis, experimental validation and neural network modeling[J]. Solar Energy, 2020, 207: 703-719.
    [24] ALONSO-ESTÉBANEZ A, PASCUAL-MUÑOZ P, SAMPEDRO-GARCÍA J L, et al. 3D numerical modelling and experimental validation of an asphalt solar collector[J]. Applied Thermal Engineering, 2017, 126: 678-688.
    [25] 马明雷, 马如进, 陈艾荣. 桥面火灾条件下斜拉桥拉索及全桥结构的安全性能[J]. 华南理工大学学报(自然科学版), 2014, 42(10): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201410020.htm

    MA Ming-lei, MA Ru-jin, CHEN Ai-rong. Safety of cables and full structure of a cable-stayed bridge exposed to fires on deck[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(10): 117-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201410020.htm
    [26] 何昌轩, 孙文州, 向磊, 等. 浇筑式沥青混凝土在G40公路长江大桥钢桥面铺装维修工程的应用[C]//郝增恒, 王民. 首届钢桥面铺装技术研讨会论文集. 北京: 人民交通出版社股份有限公司, 2018: 79-89.

    HE Chang-xuan, SUN Wen-zhou, XIANG Lei, et al. Application of guss asphalt concrete in steel deck pavement maintenance engineering for G40 Highway Yangtze River Bridge[C]// HAO Zeng-heng, WANG Min. Proceedings of the First Workshop on Steel Deck Pavement Technology. Beijing: China Communications Press Co., Ltd., 2018: 79-89. (in Chinese)
    [27] 张相宁, 安超, 高峰, 等. 高速列车车体结构热力耦合静强度及刚度优化分析[J]. 机车电传动, 2019(3): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201903022.htm

    ZHANG Xiang-ning, AN Chao, GAO Feng, et al. Optimization analysis of car body structure heat coupling static strength and rigidity for high-speed train[J]. Electric Drive for Locomotives, 2019(3): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201903022.htm
    [28] 王虎, 陈翔, 王雅. 桥面铺装层温度场的有限元模拟及剪应力分布分析[J]. 徐州工程学院学报(自然科学版), 2020, 35(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG202001006.htm

    WANG Hu, CHEN Xiang, WANG Ya. Finite element simulation of temperature field and shear stress distribution analysis of bridge deck pavement[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2020, 35(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG202001006.htm
    [29] 王亚飞, 杨宏印, 王莹, 等. 钢箱梁竖向温度梯度模式研究——以武汉市某高架桥钢箱梁为例[J]. 武汉工程大学学报, 2021, 43(2): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG202102016.htm

    WANG Ya-fei, YANG Hong-yin, WANG Ying, et al. Vertical temperature gradient model of steel box girder: taking steel box girder of viaduct in Wuhan as study case[J]. Journal of Wuhan Institute of Technology, 2021, 43(2): 202-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG202102016.htm
    [30] 康俊涛, 王伟. 火灾下大跨度钢桁架拱桥结构性能分析[J]. 哈尔滨工业大学学报, 2020, 52(9): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm

    KANG Jun-tao, WANG Wei. Analysis of structural performance of long-span steel trussed arch bridge exposed to fire[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  132
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回