留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流线型箱梁涡振主动吹气流动控制及作用机理

李春光 颜虎斌 韩艳 毛禹 罗楚钰

李春光, 颜虎斌, 韩艳, 毛禹, 罗楚钰. 流线型箱梁涡振主动吹气流动控制及作用机理[J]. 交通运输工程学报, 2022, 22(6): 220-231. doi: 10.19818/j.cnki.1671-1637.2022.06.015
引用本文: 李春光, 颜虎斌, 韩艳, 毛禹, 罗楚钰. 流线型箱梁涡振主动吹气流动控制及作用机理[J]. 交通运输工程学报, 2022, 22(6): 220-231. doi: 10.19818/j.cnki.1671-1637.2022.06.015
LI Chun-guang, YAN Hu-bin, HAN Yan, MAO Yu, LUO Chu-yu. Active blowing flow control for VIV of streamlined box girder and its mechanism[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 220-231. doi: 10.19818/j.cnki.1671-1637.2022.06.015
Citation: LI Chun-guang, YAN Hu-bin, HAN Yan, MAO Yu, LUO Chu-yu. Active blowing flow control for VIV of streamlined box girder and its mechanism[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 220-231. doi: 10.19818/j.cnki.1671-1637.2022.06.015

流线型箱梁涡振主动吹气流动控制及作用机理

doi: 10.19818/j.cnki.1671-1637.2022.06.015
基金项目: 

国家自然科学基金项目 51978087

国家自然科学基金项目 52178452

湖南省科技创新领军人才项目 2021RC4031

桥梁结构健康与安全国家重点实验室开放研究基金项目 BHSKL21-03-KF

详细信息
    作者简介:

    李春光(1980-),男,山东沂水人,长沙理工大学副教授,工学博士,从事桥梁及结构风工程研究

    通讯作者:

    韩艳(1979-),女,江苏连云港人,长沙理工大学教授,工学博士

  • 中图分类号: U441.3

Active blowing flow control for VIV of streamlined box girder and its mechanism

Funds: 

National Natural Science Foundation of China 51978087

National Natural Science Foundation of China 52178452

Science and Technology Innovation Leading Talent Project of Hunan Province 2021RC4031

Open Research Fund Project of State Key Laboratory for Health and Safety of Bridge Structures BHSKL21-03-KF

More Information
  • 摘要: 为研究基于主动吹气的流动抑振措施对流线型箱梁涡振性能的影响,进行了1∶50刚性节段模型自由悬挂风洞试验,节段模型与吹气装置连接以达到流动控制效果,分析了主梁处于最不利5°攻角时不同气孔参数下的涡振响应,并通过数值模拟重现了主梁竖弯涡振,分析了主动吹气对抑制主梁涡振的作用机理。研究结果表明:5°攻角原设计断面出现明显竖弯及扭转涡振现象,其中竖弯及扭转涡振分别有2个锁定区间,在竖弯第2锁定区间及扭转第1锁定区间出现涡振响应峰值;主动吹气的流动控制对主梁涡振响应幅值及涡振区间均有较大影响;主梁竖弯涡振在下腹板上下游或者下游吹气速率10 m·s-1时消失,最佳抑制效果达91.9%;吹气速率5 m·s-1对于扭转涡振有明显抑制作用,扭转涡振最佳抑制效果达65.4%;吹气速率对于涡振性能影响明显,吹气速率10 m·s-1的竖弯抑制效果优于吹气速率5 m·s-1,而吹气速率5 m·s-1的扭转抑制效果优于吹气速率10 m·s-1;气孔间距2.5 m工况总体涡振控制效果优于气孔间距5.0 m工况;气孔布置在下腹板的工况抑制效果优于气孔布置在上腹板的工况;当气孔布置于下游下腹板处,吹气速率达10 m·s-1,气孔间距为2.5 m时,主动吹气降低了主梁下游上下表面周期性脉动压差,破坏了下游下腹板处的负压中心,故其能有效抑制主梁竖弯涡振。

     

  • 图  1  钢箱梁标准横断面(单位:mm)

    Figure  1.  Standard cross section of steel box girder (unit: mm)

    图  2  节段模型风洞试验布置

    Figure  2.  Arrangement of wind tunnel test for segmental model

    图  3  原断面竖弯及扭转涡振响应曲线

    Figure  3.  Vertical and torsional VIV response curves of original section

    图  4  节段模型气孔布置

    Figure  4.  Air holes arrangements of segmental model

    图  5  上下游上腹板吹气工况涡振响应随不同风速变化的曲线

    Figure  5.  VIV response curves of blowing cases on upstream and downstream upper webs with different wind speeds

    图  6  上游上腹板吹气工况涡振响应随不同风速变化的曲线

    Figure  6.  VIV response curves of blowing cases on upstream upper web with different wind speeds

    图  7  下游上腹板吹气工况涡振响应随不同风速变化的曲线

    Figure  7.  VIV response curves of blowing cases on downstream upper web with different wind speeds

    图  8  上下游下腹板吹气工况涡振响应随不同风速变化的曲线

    Figure  8.  VIV response curves of blowing cases on upstream and downstream lower webs with different wind speeds

    图  9  上游下腹板吹气工况涡振响应随不同风速变化的曲线

    Figure  9.  VIV response curves of blowing cases on upstream lower web with different wind speeds

    图  10  下游下腹板吹气工况涡振响应随风速变化的曲线

    Figure  10.  VIV response curves of blowing cases on downstream lower web with different wind speeds

    图  11  风洞试验与数值模拟结果频谱分析对比

    Figure  11.  Spectrum analysis comparison between wind tunnel test and numerical simulation result

    图  12  原断面及工况22风洞试验与数值模拟竖弯位移RMS对比

    Figure  12.  Comparison of RMSs of vertical displacement between wind tunnel test and numerical simulation of original section and working case 22

    图  13  原断面及工况22一个振动周期不同时刻压力分布

    Figure  13.  Pressure distributions at different times in a vibration period of original section and working condition 22

    表  1  节段模型风洞试验参数

    Table  1.   Wind tunnel test parameters of segmental model

    参数 实桥值 模型值
    单位质量/(kg·m-1) 28 704 17.22
    单位质量惯矩/(kg·m2·m-1) 5 784 830 1.39
    频率/Hz 竖弯 0.182 4.272
    扭转 0.389 7.568
    风速比 竖弯
    扭转
    阻尼比/% 竖弯 0.48
    扭转 0.42
    斯科顿数 竖弯 12.56
    扭转 19.69
    下载: 导出CSV

    表  2  吹气流动控制试验工况

    Table  2.   Blowing flow control test cases

    工况 气孔工作位置 气孔间距/m 吹气速率/(m·s-1)
    1 上下游的上腹板 2.5 5
    2 2.5 10
    3 5.0 5
    4 5.0 10
    5 上游的上腹板 2.5 5
    6 2.5 10
    7 5.0 5
    8 5.0 10
    9 下游的上腹板 2.5 5
    10 2.5 10
    11 5.0 5
    12 5.0 10
    13 上下游的下腹板 2.5 5
    14 2.5 10
    15 5.0 5
    16 5.0 10
    17 上游的下腹板 2.5 5
    18 2.5 10
    19 5.0 5
    20 5.0 10
    21 下游的下腹版 2.5 5
    22 2.5 10
    23 5.0 5
    24 5.0 10
    下载: 导出CSV
  • [1] 葛耀君, 赵林, 许坤. 大跨桥梁主梁涡激振动研究进展与思考[J]. 中国公路学报, 2019, 32(10): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910002.htm

    GE Yao-jun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910002.htm
    [2] 华旭刚, 黄智文, 陈政清. 大跨度悬索桥的多阶模态竖向涡振与控制[J]. 中国公路学报, 2019, 32(10): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910012.htm

    HUA Xu-gang, HUANG Zhi-wen, CHEN Zheng-qing. Multi-mode vertical vortex-induced vibration of suspension bridges and control strategy[J]. China Journal of Highway and Transport, 2019, 32(10): 115-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910012.htm
    [3] 赵林, 葛耀君, 郭增伟, 等. 大跨度缆索承重桥梁风振控制回顾与思考——主梁被动控制效果与主动控制策略[J]. 土木工程学报, 2015, 48(12): 91-98. doi: 10.15951/j.tmgcxb.2015.12.013

    ZHAO Lin, GE Yao-jun, GUO Zeng-wei, et al. Reconsideration of wind-induced vibration mitigation of long-span cable supported bridges: effects of passive control and strategy of active control[J]. China Civil Engineering Journal, 2015, 48(12): 91-98. (in Chinese) doi: 10.15951/j.tmgcxb.2015.12.013
    [4] 李春光, 张佳, 韩艳, 等. 栏杆基石对闭口箱梁桥梁涡振性能影响的机理[J]. 中国公路学报, 2019, 32(10): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910015.htm

    LI Chun-guang, ZHANG Jia, HAN Yan, et al. Mechanism of the influence of railing cornerstone on vortex-induced vibration of closed box girder bridge[J]. China Journal of Highway and Transport, 2019, 32(10): 150-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910015.htm
    [5] 廖海黎, 马存明, 李明水, 等. 港珠澳大桥的结构抗风性能[J]. 清华大学学报(自然科学版), 2020, 60(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202001006.htm

    LIAO Hai-li, MA Cun-ming, LI Ming-shui, et al. Wind resistance of the Hong Kong-Zhuhai-Macao Bridge[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(1): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202001006.htm
    [6] LI Hui, LAIMA S, OU Jin-ping, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33(6): 1894-1907. doi: 10.1016/j.engstruct.2011.02.017
    [7] 陈政清, 黄智文, 王建辉, 等. 桥梁用TMD的基本要求与电涡流TMD[J]. 湖南大学学报(自然科学版), 2013, 40(8): 6-10. doi: 10.3969/j.issn.1674-2974.2013.08.002

    CHEN Zheng-qing, HUANG Zhi-wen, WANG Jian-hui, et al. Basic requirements of tuned mass damper for bridges and the eddy current TMD[J]. Journal of Hunan University (Natural Sciences), 2013, 40(8): 6-10. (in Chinese) doi: 10.3969/j.issn.1674-2974.2013.08.002
    [8] 黄智文. 电涡流阻尼器理论研究及其在桥梁竖向涡振控制中的应用[D]. 长沙: 湖南大学, 2016.

    HUANG Zhi-wen. Theoretical study of eddy current damper and its application in vertical vortex-induced vibration control of bridges[D]. Changsha: Hunan University, 2016. (in Chinese)
    [9] 张洪福. 基于展向风场扰动的大跨桥梁单箱梁主梁风效应流动控制[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZHANG Hong-fu. Flow control on wind-induced effects of long-span single-box girders based on spanwise perturbation of wind field[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [10] 段青松, 马存明. 半开口和分离边箱开口断面主梁竖向涡振性能对比[J]. 交通运输工程学报, 2021, 21(4): 130-138. doi: 10.19818/j.cnki.1671-1637.2021.04.009

    DUAN Qing-song, MA Cun-ming. Comparison of vertical vortex-induced vibration characteristics between semi-open girder and separated edge-boxes open girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 130-138. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.009
    [11] 管青海, 李加武, 胡兆同, 等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击, 2014, 33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029

    GUAN Qing-hai, LI Jia-wu, HU Zhao-tong, et al. Effects of railings on vortex induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(3): 150-156. (in Chinese) doi: 10.3969/j.issn.1000-3835.2014.03.029
    [12] 崔欣, 王慧贤, 管青海, 等. 栏杆透风率对主梁涡振特性影响的风洞试验[J]. 长安大学学报(自然科学版), 2018, 38(3): 71-79. doi: 10.3969/j.issn.1671-8879.2018.03.009

    CUI Xin, WANG Hui-xian, GUAN Qing-hai, et al. Wind tunnel experimental on influence of railing ventilation rate on characteristics of vortex-induced vibration of main girder[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(3): 71-79. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.03.009
    [13] 管青海, 李加武, 刘健新. 典型箱梁断面双竖向涡振区的成因分析[J]. 长安大学学报(自然科学版), 2013, 33(4): 40-46. doi: 10.3969/j.issn.1671-8879.2013.04.008

    GUAN Qing-hai, LI Jia-wu, LIU Jian-xin. Investigation into formation of two lock-in districts of vertical vortex-induced vibration of a box bridge deck section[J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(4): 40-46. (in Chinese) doi: 10.3969/j.issn.1671-8879.2013.04.008
    [14] 张伟, 葛耀君. 导流板对大跨桥梁风振响应影响的流场机理[J]. 中国公路学报, 2009, 22(3): 52 -57. doi: 10.3321/j.issn:1001-7372.2009.03.010

    ZHANG Wei, GE Yao-jun. Flow field mechanism of wind induced vibration response of large span bridge influenced by guide vine[J]. China Journal of Highway and Transport, 2009, 22(3): 52-57. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.03.010
    [15] LARSEN A. Aerodynamic aspects of the final design of the 1 624 m suspension bridge across the Great Belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2/3): 261-285.
    [16] LARSEN A, ESDAHL S, ANDERSEN J E, et al. Storebaelt Suspension Bridge—vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3): 283-296.
    [17] SCHEWE G, LARSEN A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 829-838. doi: 10.1016/S0167-6105(98)00075-0
    [18] 李永乐, 侯光阳, 向活跃, 等. 大跨度悬索桥钢箱主梁涡振性能优化风洞试验研究[J]. 空气动力学学报, 2011, 29(6): 702-708. doi: 10.3969/j.issn.0258-1825.2011.06.004

    LI Yong-le, HOU Guang-yang, XIANG Huo-yue, et al. Optimization of the vortex induced vibration for steel box girder of long span suspension bridges by wind tunnel test[J]. Acta Aerodynamica Sinica, 2011, 29(6): 702-708. (in Chinese) doi: 10.3969/j.issn.0258-1825.2011.06.004
    [19] 张建, 郑史雄, 唐煌, 等. 基于节段模型试验的悬索桥涡振性能优化研究[J]. 实验流体力学, 2015, 29(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201502009.htm

    ZHANG Jian, ZHENG Shi-xiong, TANG Huang, et al. Research on optimizing vortex-induced vibration performance for suspension bridge based on section model test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 48-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201502009.htm
    [20] KIM J, CHOI H. Distributed forcing of flow over a circular cylinder[J]. Physics of Fluids, 2005, 17(3): 033103. doi: 10.1063/1.1850151
    [21] BOBERG M, FELTRIN G, MARTINOLI A. A novel bridge section model endowed with actively controlled flap arrays mitigating wind impact[C]//IEEE. 2015 IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2015: 1837-1842.
    [22] LI K, GE Y J, GUO Z W, et al. Theoretical framework of feedback aerodynamic control of flutter oscillation for long-span suspension bridges by the twin-winglet system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 166-177. doi: 10.1016/j.jweia.2015.06.012
    [23] 陈文礼, 陈冠斌, 黄业伟, 等. 斜拉索涡激振动的被动自吸吹气流动控制[J]. 中国公路学报, 2019, 32(10): 222-229. doi: 10.19721/j.cnki.1001-7372.2019.10.021

    CHEN Wen-li, CHEN Guan-bin, HUANG Ye-wei, et al. Vortex-induced vibration control of a stay cable based on the passive-suction-jet method[J]. China Journal of Highway and Transport, 2019, 32(10): 222-229. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.10.021
    [24] CHEN Guan-bin, ZHANG Liang-quan, CHEN Wen-li, et al. Self-suction-and-jet control in flow regime and unsteady force for a single box girder[J]. Journal of Bridge Engineering, 2019, 24(8): 04019072. doi: 10.1061/(ASCE)BE.1943-5592.0001437
    [25] CHEN Wen-li, YANG Wen-han, LI Hui. Self-issuing jets for suppression of vortex-induced vibration of a single box girder[J]. Journal of Fluids and Structures, 2019, 86: 213-235. doi: 10.1016/j.jfluidstructs.2019.02.017
    [26] YANG Wen-han, CHEN Wen-li, LI Hui. Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method[J]. Journal of Fluids and Structures, 2020, 96: 103017. doi: 10.1016/j.jfluidstructs.2020.103017
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  108
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回