留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整体式斜交连续梁桥抗震性能

赵秋红 王晴薇 董硕 陈宝春 刘畅 任伟

赵秋红, 王晴薇, 董硕, 陈宝春, 刘畅, 任伟. 整体式斜交连续梁桥抗震性能[J]. 交通运输工程学报, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016
引用本文: 赵秋红, 王晴薇, 董硕, 陈宝春, 刘畅, 任伟. 整体式斜交连续梁桥抗震性能[J]. 交通运输工程学报, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016
ZHAO Qiu-hong, WANG Qing-wei, DONG Shuo, CHEN Bao-chun, LIU Chang, REN Wei. Seismic behavior of integral skewed continuous girder bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016
Citation: ZHAO Qiu-hong, WANG Qing-wei, DONG Shuo, CHEN Bao-chun, LIU Chang, REN Wei. Seismic behavior of integral skewed continuous girder bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 232-244. doi: 10.19818/j.cnki.1671-1637.2022.06.016

整体式斜交连续梁桥抗震性能

doi: 10.19818/j.cnki.1671-1637.2022.06.016
基金项目: 

国家自然科学基金项目 51878447

国家自然科学基金项目 51678406

中央高校基本科研业务费专项资金项目 300102212519

国家重点研发计划 2021YFB1600300

详细信息
    作者简介:

    赵秋红(1975-),女,湖北宜昌人,天津城建大学副教授,工学博士,从事桥梁抗震、高性能结构及材料研究

    通讯作者:

    任伟(1975-),男,陕西西安人,长安大学教授,工学博士

  • 中图分类号: U442.55

Seismic behavior of integral skewed continuous girder bridges

Funds: 

National Natural Science Foundation of China 51878447

National Natural Science Foundation of China 51678406

Fundamental Research Funds for the Central Universities 300102212519

National Key Research and Development Program of China 2021YFB1600300

More Information
  • 摘要: 采用SAP2000软件建立了某整体式斜交连续梁桥的三维有限元模型,通过非线性时程分析,研究了整体式斜交连续梁桥在地震作用下的受力特性及抗震性能,并探究了跨数、斜交角、台后土密实度和墩高等主要结构及基础参数对该类桥梁地震响应的影响。研究结果表明:整体式斜交连续梁桥中震害变形主要集中于桥台桩,桩顶截面在峰值加速度为0.4g的地震作用下形成塑性铰时,墩顶支座无破坏,且桥墩几乎无损伤;桥台桩位移及纵桥向弯矩的最大值均位于桩顶,而横桥向弯矩最大值可能位于桩顶或桩身反向弯矩峰值处;随着跨数的增加,整体式斜交连续梁桥的地震响应尤其是墩顶支座剪切应变及桥面转角明显增大,当跨数由单跨增加到4跨时,地震响应均增加了1倍以上,墩顶支座剪切应变甚至增加近2倍;随着斜交角的增加,桩顶纵桥向位移、桩顶截面屈服面函数值及中跨转角明显增大,斜交角为60°时,桩顶纵桥向位移增加了3倍以上,斜交角为45°时,墩顶支座剪切应变最大;随着台后土密实度的增加,各构件纵桥向位移响应与墩顶支座的纵向剪切变形降低,桥台桩、桥墩纵桥向位移及墩顶支座纵向剪切变形分别减小了12.9%、9.3%和9.5%;随着墩高的增加,墩顶位移明显增加,而支座剪切应变明显降低,但桩顶位移及桩顶截面屈服面函数值几乎不变;当墩高从4 m增大到9 m时,墩顶漂移率增大了42.1%,墩顶支座剪切应变减小了57.5%。

     

  • 图  1  整体式斜交连续梁桥有限元分析模型

    Figure  1.  Finite element analysis model of integral skewed continuous girder bridge

    图  2  桥墩与桥台有限元模型

    Figure  2.  Finite element models of pier and abutment

    图  3  墩顶支座双线性分析模型

    Figure  3.  Bilinear analysis model of pier top support

    图  4  台后土弹簧力-位移曲线

    Figure  4.  Force-displacement curves of soil springs behind abutment

    图  5  桩周土弹簧力-位移曲线

    Figure  5.  Force-displacement curves of soil springs around pile

    图  6  位移和弯矩分布

    Figure  6.  Distributions of displacements and bending moments

    图  7  屈服面函数值分布

    Figure  7.  Distributions of yield surface function values

    图  8  桥面位移

    Figure  8.  Displacements of bridge deck

    图  9  桥面转角

    Figure  9.  Bridge deck rotations

    图  10  台后土压力分布

    Figure  10.  Distributions of soil pressure behind abutment

    图  11  墩顶支座变形

    Figure  11.  Deformations of pier top support

    图  12  墩顶漂移率

    Figure  12.  Drift rates of pier top

    图  13  不同跨数下桥台桩、桥墩和墩顶支座的地震响应

    Figure  13.  Seismic responses of abutment pile, pier and pier top support under different numbers of spans

    图  14  不同跨数下桥面的地震响应

    Figure  14.  Seismic responses of bridge deck under different numbers of spans

    图  15  不同斜交角下桥台桩、桥墩和墩顶支座的地震响应

    Figure  15.  Seismic responses of abutment pile, pier and pier top support under different skew angles

    图  16  不同斜交角下桥面的地震响应

    Figure  16.  Seismic responses of bridge deck under different skew angles

    图  17  不同墩高下桥台桩、桥墩和墩顶支座的地震响应

    Figure  17.  Seismic responses of abutment pile, pier and pier top support under different pier heights

    图  18  不同墩高下桥面的地震响应

    Figure  18.  Seismic responses of bridge deck under different pier heights

    表  1  两种损伤状态下的墩顶漂移率

    Table  1.   Drift ratios of pier top under two damage states

    墩柱损伤状态 墩顶漂移率/%
    混凝土保护层脱落 2.2
    纵筋开始屈曲 6.3
    下载: 导出CSV

    表  2  整体式斜交连续梁桥各构件的损伤评价指标

    Table  2.   Damage evaluation indexes of each component of integral skewed continuous girder bridge

    评价指标 地震强度/g
    0.1 0.2 0.3 0.4 0.5 0.6
    墩顶漂移率/% 0.08 0.17 0.27 0.38 0.48 0.58
    墩顶支座剪切应变 0.151 0.372 0.615 0.900 1.244 1.693
    桥台桩顶屈服面函数值 0.204 0.379 0.647 0.917 1.138 1.157
    下载: 导出CSV

    表  3  不同台后土密实度下桥台桩、桥墩和墩顶支座的地震响应

    Table  3.   Seismic responses of abutment pile, pier and pier top support under different soil compactness behind abutment

    土体重度 桥台桩 桥墩 墩顶支座
    桩顶纵桥向位移/mm 桩顶横桥向位移/mm 桩顶屈服面函数值 墩顶纵桥向位移/mm 墩顶横桥向位移/mm 墩顶漂移率/% 纵桥向剪切变形/mm 横桥向剪切变形/mm 剪切应变
    松散 -26.3 -72.0 0.940 5.4 11.7 0.32 22.1 62.8 0.918
    密实 -22.9 -73.1 0.925 4.9 11.8 0.31 20.0 63.5 0.921
    下载: 导出CSV

    表  4  不同台后土密实度下桥面的地震响应

    Table  4.   Seismic responses of bridge deck under different soil compactness behind abutment

    土体重度 桥面纵桥向位移/mm 桥面横桥向位移/mm 桥面转角/10-4rad
    0#桥台 1#桥墩 2#桥墩 3#桥台 0#桥台 1#桥墩 2#桥墩 3#桥台 左边跨 中跨 右边跨
    松散 21.3 24.4 28.4 31.3 74.2 81.5 72.1 48.7 6.99 3.83 9.07
    密实 18.3 21.3 25.3 28.2 75.6 82.5 72.7 49.5 6.93 4.00 9.16
    下载: 导出CSV
  • [1] 卢明奇, 杨庆山, 李英勇. 斜度对斜交桥地震作用下的扭转效应影响[J]. 哈尔滨工程大学学报, 2012, 33(2): 155-159. doi: 10.3969/j.issn.1006-7043.201010032

    LU Ming-qi, YANG Qing-shan, LI Ying-yong. Torsion effects of skew angles on skew bridges during earthquakes[J]. Journal of Harbin Engineering University, 2012, 33(2): 155-159. (in Chinese) doi: 10.3969/j.issn.1006-7043.201010032
    [2] 庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7): 1377-1387. doi: 10.3321/j.issn:1000-6915.2009.07.011

    ZHUANG Wei-lin, LIU Zhen-yu, JIANG Jin-song. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1377-1387. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.011
    [3] MALEKI S. Deck modeling for seismic analysis of skewed slab- girder bridges[J]. Engineering Structures, 2002, 24(10): 1315-1326. doi: 10.1016/S0141-0296(02)00066-4
    [4] KAVIANI P, ZAREIAN F, TACIROGLU E. Seismic behavior of reinforced concrete bridges with skew-angled seat-type abutments[J]. Engineering Structures, 2012, 45: 137-150. doi: 10.1016/j.engstruct.2012.06.013
    [5] ABDEL-MOHTI A, PEKCAN G. Seismic response of skewed RC box-girder bridges[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4): 415- 426. doi: 10.1007/s11803-008-1007-4
    [6] KAWASHIMA K, TIRASIT P. Effect of nonlinear seismic torsion on the performance of skewed bridge piers[J]. Journal of Earthquake Engineering, 2008, 12(6): 980-998. doi: 10.1080/13632460701673019
    [7] YANG C S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83: 116-128. doi: 10.1016/j.engstruct.2014.10.025
    [8] ERHAN S, DICLELI M. Effect of dynamic soil-bridge interaction modeling assumptions on the calculated seismic response of integral bridges[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 42-55. doi: 10.1016/j.soildyn.2014.06.033
    [9] KUNIN J, ALAMPALLI S. Integral abutment bridges: current practice in united states and Canada[J]. Journal of Performance of Constructed Facilities, 2000, 14(3): 104-111. doi: 10.1061/(ASCE)0887-3828(2000)14:3(104)
    [10] HASSIOTIS S, ROMAN E. A survey of current issues on the use of integral abutment bridges[J]. Bridge Structures, 2005, 1(2): 81-101. doi: 10.1080/15732480500125635
    [11] 赵秋红, 齐朝阳, 安泽宇, 等. 考虑SSI的整体式钢桥抗震性能参数分析[J]. 交通运输工程学报, 2018, 18(5): 35-46. doi: 10.3969/j.issn.1671-1637.2018.05.004

    ZHAO Qiu-hong, QI Zhao-yang, AN Ze-yu, et al. Parametric analysis on seismic behavior of integral abutment steel bridge considering SSI[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.05.004
    [12] XU M, LIU P F. Response of full-height frame integral abutments subjected to seismic motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 356-368. doi: 10.1016/j.soildyn.2019.03.024
    [13] VASHEGHANI-FARAHANI R, ZHAO Qiu-hong, BURDETTE E G. Seismic analysis of integral abutment bridge in Tennessee, including soil-structure interaction[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2201): 70-79.
    [14] ITANI A M, PEKCAN G. Seismic performance of steel plate girder bridges with integral abutments[D]. Reno: University of Nevada, 2011.
    [15] ERHAN S, DICLELI M. Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments[J]. Bulletin of Earthquake Engineering, 2015, 13(2): 653-677. doi: 10.1007/s10518-014-9635-8
    [16] KOZAK D L, LAFAVE J M, FAHNESTOCK L A. Seismic modeling of integral abutment bridges in Illinois[J]. Engineering Structures, 2018, 165: 170-183. doi: 10.1016/j.engstruct.2018.02.088
    [17] 黄福云, 庄一舟, 付毳, 等. 无伸缩缝梁桥抗震性能与设计计算方法研究[J]. 地震工程与工程振动, 2015, 35(5): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201505003.htm

    HUANG Fu-yun, ZHUANG Yi-zhou, FU Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201505003.htm
    [18] SIM Y, JIN K N, HONG E S, et al. Numerical study on the behavior of ground and structure in geosynthetic-reinforced soil (grs) integral bridges[J]. LHI Journal of Land, Housing, and Urban Affairs, 2021, 12(3): 97-108.
    [19] ABDEL-FATTAH M T, ABDEL-FATTAH T T. Longitudinal seismic response of integral abutment bridges[J]. Proceedings of the Institution of Civil Engineers—Bridge Engineering, 2021, DOI: 10.1680/jbren.20.00051.
    [20] ARGYROUDIS S, PALAIOCHORINOU A, MITOULIS S, et al. Use of rubberised backfills for improving the seismic response of integral abutment bridges[J]. Bulletin of Earthquake Engineering, 2016, 14(12): 3573-3590. doi: 10.1007/s10518-016-0018-1
    [21] SHAMSABADI A, KAPUSKAR M. Nonlinear soil-abutment- foundation-structure interaction analysis of skewed bridges subjected to near-field ground motions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2202(1): 192-205. doi: 10.3141/2202-23
    [22] ITANI A M, PEKAN G. Seismic performance of steel plate girder bridges with integral abutments[R]. Reno: University of Nevada, 2011.
    [23] 赵秋红, 张冀豪, 陈宝春. 整体式斜交桥抗震性能分析[J]. 地震工程与工程振动, 2018, 38(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201804006.htm

    ZHAO Qiu-hong, ZHANG Ji-hao, CHEN Bao-chun. Seismic analysis on skewed integral abutment bridges[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201804006.htm
    [24] ZHAO Qiu-hong, DONG Shuo, WANG Qing-wei. Seismic Response of skewed integral abutment bridges under near-fault ground motions, including soil-structure interaction[J]. Applied Sciences-Basel, 2021, 11(7): 3217. doi: 10.3390/app11073217
    [25] 汤虎, 李建中. 板式橡胶支座桥梁地震位移控制方法[J]. 中国公路学报, 2013, 26(3): 110-116. doi: 10.3969/j.issn.1001-7372.2013.03.012

    TANG Hu, LI Jian-zhong. Displacement control method for continuous bridges on laminated rubber bearings under earthquake excitation[J]. China Journal of Highway and Transport, 2013, 26(3): 110-116. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.03.012
    [26] ZORDAN T, BRISEGHELLA B, LAN C. Parametric and pushover analyses on integral abutment bridge[J]. Engineering Structures, 2011, 33(2): 502-515. doi: 10.1016/j.engstruct.2010.11.009
    [27] QUINN B H, CIVJAN S A. Parametric study on effects of pile orientation in integral abutment bridges[J]. Journal of Bridge Engineering, 2017, 22(4): 04016132. doi: 10.1061/(ASCE)BE.1943-5592.0000952
    [28] SHAMSABADI A, ROLLINS K M, KAPUSKAR M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720. doi: 10.1061/(ASCE)1090-0241(2007)133:6(707)
    [29] DICLELI M. Integral abutment-backfill behavior on sand soil—pushover analysis approach[J]. Journal of Bridge Engineering, 2005, 10(3): 354-364. doi: 10.1061/(ASCE)1084-0702(2005)10:3(354)
    [30] BERRY M, EBERHARD M. Performance models for flexural damage in reinforced concrete columns[R]. Berkeley: Pacific Earthquake Engineering Research Center, 2003.
    [31] 李冲, 王克海, 李悦, 等. 板式橡胶支座摩擦滑移抗震性能试验研究[J]. 东南大学学报(自然科学版), 2014, 44(1): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201401030.htm

    LI Chong, WANG Ke-hai, LI Yue, et al. Experimental study on seismic performance of laminated rubber bearings with friction slipping[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(1): 162-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201401030.htm
    [32] 李立峰, 吴文朋, 黄佳梅, 等. 板式橡胶支座地震易损性分析[J]. 湖南大学学报(自然科学版), 2011, 38(11): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201111002.htm

    LI Li-feng, WU Wen-peng, HUANG Jia-mei, et al. Research on the seismic vulnerability analysis of laminated rubber bearing[J]. Journal of Hunan University (Natural Sciences), 2011, 38(11): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201111002.htm
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  98
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回