留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁路工务、电务、供电检测装备发展现状综述

杨飞 涂文靖 魏子龙 柯在田 刘秀波 杨爱红 王石磊

杨飞, 涂文靖, 魏子龙, 柯在田, 刘秀波, 杨爱红, 王石磊. 铁路工务、电务、供电检测装备发展现状综述[J]. 交通运输工程学报, 2023, 23(1): 47-69. doi: 10.19818/j.cnki.1671-1637.2023.01.004
引用本文: 杨飞, 涂文靖, 魏子龙, 柯在田, 刘秀波, 杨爱红, 王石磊. 铁路工务、电务、供电检测装备发展现状综述[J]. 交通运输工程学报, 2023, 23(1): 47-69. doi: 10.19818/j.cnki.1671-1637.2023.01.004
YANG Fei, TU Wen-jing, WEI Zi-long, KE Zai-tian, LIU Xiu-bo, YANG Ai-hong, WANG Shi-lei. Review on development status of inspection equipment for track maintenance, communication and signaling, and power supply of railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 47-69. doi: 10.19818/j.cnki.1671-1637.2023.01.004
Citation: YANG Fei, TU Wen-jing, WEI Zi-long, KE Zai-tian, LIU Xiu-bo, YANG Ai-hong, WANG Shi-lei. Review on development status of inspection equipment for track maintenance, communication and signaling, and power supply of railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 47-69. doi: 10.19818/j.cnki.1671-1637.2023.01.004

铁路工务、电务、供电检测装备发展现状综述

doi: 10.19818/j.cnki.1671-1637.2023.01.004
基金项目: 

国家自然科学基金项目 52278465

中国国家铁路集团有限公司科技研究开发计划 P2021T013

详细信息
    作者简介:

    杨飞(1985-),男,山东枣庄人,中国铁道科学研究院集团有限公司副研究员,从事铁路基础设施检测与评估技术研究

    通讯作者:

    涂文靖(1983-),男,江西南昌人,中国国家铁路集团有限公司高级工程师

  • 中图分类号: U216.3

Review on development status of inspection equipment for track maintenance, communication and signaling, and power supply of railway

Funds: 

National Natural Science Foundation of China 52278465

Science and Technology Research and Development Project of China State Railway Group Co., Ltd P2021T013

More Information
  • 摘要: 从铁路工务、电务、供电检测装备的类型、检测对象等角度,梳理了各国检测装备的发展概况,分析了综合检测车、专业检测车、搭载式检测装置的发展历史、技术特点与应用情况,比较了国内外同类型检测装备在设计理念、功能集成、运用维护等方面的差异,分析了中国检测装备存在的不足;在此基础上,借鉴国外先进经验并结合中国实际情况,凝练了中国检测装备的发展趋势。研究结果表明:中国铁路工务、电务、供电检测技术取得了长足进步,部分领域达到或接近世界先进水平;但与实际运营需求相比还存在一定差距,主要表现在检测项目不充足,检测设备自动化和智能化水平较低,检测数据利用不充分,检测成本较高等;针对上述问题,检测装备的发展应朝着检测功能综合化、检测装备小型化与模块化、检测过程智能化与无人化的方向发展,形成可靠性高、检测项目齐全、检测数据精准的现代化检测装备体系,以期实现对铁路基础设施的状态维修和全生命周期管理。

     

  • 图  1  铁路工务、电务、供电检测装备

    Figure  1.  Inspection equipment for track maintenance, communication and signaling, and power supply of railway

    图  2  “黄色医生”高速综合检测车

    Figure  2.  "Doctor Yellow" high-speed comprehensive inspection train

    图  3  “East-i”高速综合检测车

    Figure  3.  "East-i" high-speed comprehensive inspection train

    图  4  “IRIS 320”高速综合检测车

    Figure  4.  "IRIS 320" high-speed comprehensive inspection train

    图  5  “阿基米德”高速综合检测车

    Figure  5.  "ARCHIMEDE" high-speed comprehensive inspection train

    图  6  “Dia.Man.Te”高速综合检测车

    Figure  6.  "Dia.Man.Te" high-speed comprehensive inspection train

    图  7  “New Measurement Train”综合检测车

    Figure  7.  "New Measurement Train" comprehensive inspection train

    图  8  “ROGER 1000K”综合检测车

    Figure  8.  "ROGER 1000K" comprehensive inspection train

    图  9  Harsco公司的综合检测车

    Figure  9.  Comprehensive inspection train developed by Harsco

    图  10  “OMWE”轨道检测车

    Figure  10.  "OMWE" track inspection train

    图  11  “RAILab”轨道检测车

    Figure  11.  "RAILab" track inspection train

    图  12  “Mauzin”轨道检测车

    Figure  12.  "Mauzin" track inspection train

    图  13  ENSCO公司的轨道检测车

    Figure  13.  Track inspection train developed by ENSCO

    图  14  “NxTrack”轨道检测车

    Figure  14.  "NxTrack" track inspection train

    图  15  EM250轨道检测车

    Figure  15.  EM250 track inspection train

    图  16  URIC型钢轨探伤车

    Figure  16.  URIC rail flaw detection car

    图  17  德国联邦铁路公司的钢轨探伤车

    Figure  17.  Rail flaw detection car developed by Deutsche Bahn

    图  18  Railbound型钢轨探伤车

    Figure  18.  Railbound rail flaw detection car

    图  19  Sperry公司的钢轨探伤车

    Figure  19.  Rail flaw detection car of Sperry

    图  20  RTI钢轨探伤车

    Figure  20.  Rail flaw detection car of RTI

    图  21  东日本铁路公司的隧道衬砌检测车

    Figure  21.  Tunnel lining inspection train of JR East

    图  22  东日本铁路公司隧道衬砌检测车

    Figure  22.  Tunnel lining inspection train of JR East

    图  23  德国联邦铁路公司隧道衬砌检测车

    Figure  23.  Tunnel lining inspection train of Deutsche Bahn

    图  24  SafeRailSystem雷达检测系统

    Figure  24.  SafeRailSystem radar inspection system

    图  25  HyGround探地雷达车

    Figure  25.  Ground penetrating radar vehicle of HyGround

    图  26  美国交通技术研究中心轨道刚度检测车

    Figure  26.  Track stiffness inspection train of TTCI

    图  27  瑞士联邦铁路公司轨道刚度检测车

    Figure  27.  Track stiffness inspection train of SBB

    图  28  LIMEZ Ⅲ型建筑限界检测车

    Figure  28.  LIMEZ Ⅲ construction clearance inspection train

    图  29  东日本铁路公司的站台限界检测小车

    Figure  29.  Platform clearance test trolley of JR East

    图  30  日本接触网检测车

    Figure  30.  Catenary inspection train of Japan

    图  31  德国联邦铁路公司研制的接触网检测系统

    Figure  31.  Catenary inspection system of Deutsche Bahn

    图  32  OPTIMESS公司的接触网检测系统

    Figure  32.  Catenary inspection system of OPTIMESS

    图  33  韩国铁道公社的接触网视频检测系统

    Figure  33.  Video-based catenary inspection system of KNR

    图  34  MER MEC公司的接触网检测系统

    Figure  34.  Catenary inspection system of MER MEC

    图  35  RAIDARSS-3轨道检测系统

    Figure  35.  RAIDARSS-3 track inspection system

    图  36  法国国营铁路公司搭载式轨道检测系统

    Figure  36.  On-board track inspection system of SNCF

    图  37  CTM型搭载式轨道检测系统

    Figure  37.  CTM on-board track inspection system

    图  38  东日本铁路公司搭载式接触网检测系统

    Figure  38.  On-board catenary inspection system of JR East

    图  39  中国高速综合检测车

    Figure  39.  High-speed comprehensive inspection train of China

    图  40  “黄色医生”高速综合检测车的轨道检测系统

    Figure  40.  Track inspection system of "Doctor Yellow" high-speed comprehensive inspection train

    图  41  10 m弦测法幅值增益

    Figure  41.  Amplitude gain of 10 m chord measurement method

    图  42  GJ-6型轨道检测系统

    Figure  42.  GJ-6 track inspection system

    图  43  GX-160型综合巡检车

    Figure  43.  GX-160 comprehensive patrol inspection train

    图  44  GTC-80型钢轨探伤车

    Figure  44.  GTC-80 rail flaw detection car

    图  45  隧道检测车

    Figure  45.  Tunnel inspection train

    图  46  轨道刚度检测车

    Figure  46.  Track stiffness inspection train

    图  47  高铁接触网检测车

    Figure  47.  Catenary inspection train of high-speed railway

    图  48  电务检测车

    Figure  48.  Communication and signaling inspection train

    图  49  车载式线路检测仪

    Figure  49.  Vehicle-mounted line inspection device

    图  50  车载式接触网检测装置

    Figure  50.  Vehicle-mounted catenary inspection device

    图  51  韩国接触网检测系统

    Figure  51.  Korean catenary inspection system

    表  1  高速综合检测车轨道检测系统对比

    Table  1.   Comparison of track inspection systems of high-speed comprehensive inspection trains

    国别 型号 最高检测速度(km·h-1) 车辆编组 轨道几何检测原理 其他检测项目
    中国 CRH380AJ-0201 400 8节编组,7动1拖 惯性基准法 轮轨作用力、车辆动态响应等
    日本 East-i 275 6节编组,4动2拖 弦测法 轮轨作用力、车辆动态响应、轨道表面图像、隧道表观状态、环境噪声等
    法国 IRIS 320 320 10节编组,2动8拖 惯性基准法 轮轨作用力、车辆动态响应、轨道表面图像、线路环境图像、环境噪声等
    意大利 Dia.Man.Te 330 10节编组,2动8拖 惯性基准法 轮轨作用力、车辆动态响应、建筑限界、线路环境图像等
    英国 New Measurement Train 200 7节编组,2动5拖 惯性基准法 车辆动态响应等
    下载: 导出CSV

    表  2  各国钢轨探伤车检测系统对比

    Table  2.   Comparison on inspection systems of rail flaw detection cars from different countries

    国别 型号 最高检测速度/(km·h-1) 钢轨内部伤损 钢轨表面伤损 特色功能
    中国 GTC-80 80 超声检测,轮式传感器 轨面擦伤与钢轨波磨检测
    日本 TOKIMEC 40 超声检测,滑靴式传感器 钢轨廓形与磨耗测量
    德/法 UST02 100 超声检测,滑靴式传感器 涡流检测
    德国 SPZ3 80 超声检测,滑靴式传感器 涡流检测 钢轨表观状态巡检
    下载: 导出CSV
  • [1] 王同军. 抓住重要战略机遇期开创铁路建设高质量持续健康发展新局面[J]. 中国铁路, 2019(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201902002.htm

    WANG Tong-jun. Seize important opportunities to create a new situation of high-quality and sustainable development for railways[J]. China Railway, 2019(2): 7-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201902002.htm
    [2] FURUKAWA A. Recent trends in track inspection and monitoring technologies[J]. Quarterly Report of RTRI, 2015, 56(1): 1-4. doi: 10.2219/rtriqr.56.1
    [3] MATSUDA H, TAKIKAWA M, NANMOKU T, et al. Track test monitoring system using a multipurpose experimental train[J]. WIT Transactions on the Built Environment, 2010, 114: 701-708.
    [4] NICHOHA V, STOROZH V, MATⅡESHYN Y. Development of modern methods and directions of rapid diagnostics of railway tracks defects by television methods[C]//IEEE. Proceedings of 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. New York: IEEE, 2022: 663-668.
    [5] MORETTI M, TRIGLIA M, MAFFEI G. ARCHIMEDE—the first European diagnostic train for global monitoring of railway infrastructure[C]//IEEE. 2004 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2004: 522-526.
    [6] BOMBARDA D, VITETTA G M, FERRANTE G. Rail diagnostics based on ultrasonic guided waves: an overview[J]. Applied Sciences, 2021, 11(3): 1071. doi: 10.3390/app11031071
    [7] BALOUCHI F, BEVAN A, FORMSTON R. Development of railway track condition monitoring from multi-train in-service vehicles[J]. Vehicle System Dynamics, 2021, 59(9): 1397-1417. doi: 10.1080/00423114.2020.1755045
    [8] LEE J S, CHOI S, KIM S S, et al. Track condition monitoring by in-service trains: a comparison between axle-box and bogie accelerometers[J]. IET Conference Publications, 2011, DOI: 10.1049/cp.2011.0586.
    [9] PALESE J W, DIVENTURA S, HILL K, et al. Optimizing tamper efficiency through the integration of inertial based track geometry measurement[C]//ASME. Proceedings of the 2017 Joint Rail Conference. New York: ASME, 2017: 1-11.
    [10] HAIGERMOSER A, LUBER B, RAUH J, et al. Road and track irregularities: measurement, assessment and simulation[J]. Vehicle System Dynamics, 2015, 53(7): 878-957. doi: 10.1080/00423114.2015.1037312
    [11] KARIS T, BERG M, STICHEL S, et al. Correlation of track irregularities and vehicle responses based on measured data[J]. Vehicle System Dynamics, 2018, 56(6): 967-981. doi: 10.1080/00423114.2017.1403634
    [12] MERCIER S, MEIER-HIRMER C, ROUSSIGNOL M. Bivariate Gamma wear processes for track geometry modelling, with application to intervention scheduling[J]. Structure and Infrastructure Engineering, 2012, 8(4): 357-366. doi: 10.1080/15732479.2011.563090
    [13] MARTIN T P, ZAAZAA K E, WHITTEN B, et al. Using a multibody dynamic simulation code with neural network technology to predict railroad vehicle-track interaction performance in real time[C]//ASME. 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2007: 1881-1891.
    [14] LOPRESTI J, MCHENRY M. Detection of concrete tie rail seat deterioration[R]. Washington DC: Federal Railroad Administration, 2019.
    [15] SADEGHI J, MOTIEYAN NAJAR M E, ZAKERI J A, et al. Development of railway ballast geometry index using automated measurement system[J]. Measurement, 2019, 138: 132-142. doi: 10.1016/j.measurement.2019.01.092
    [16] ALAHAKOON S, SUN Y Q, SPIRYAGIN M, et al. Rail flaw detection technologies for safer, reliable transportation: a review[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(2): 020801. doi: 10.1115/1.4037295
    [17] MIĆIĆ M, BRAJOVIĆ L, LAZAREVIĆ L, et al. Inspection of RCF rail defects—review of NDT methods[J]. Mechanical Systems and Signal Processing, 2023, 182: 109568. doi: 10.1016/j.ymssp.2022.109568
    [18] 王雪梅, 倪文波, 王平. 高速铁路轨道无损探伤技术的研究现状和发展趋势[J]. 无损检测, 2013, 35(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201302005.htm

    WANG Xue-mei, NI Wen-bo, WANG Ping. Overview and future development of rails nondestructive inspection[J]. Nondestructive Testing, 2013, 35(2): 10-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201302005.htm
    [19] 徐其瑞, 刘峰. 钢轨探伤车技术发展与应用[J]. 中国铁路, 2011(7): 44-47. doi: 10.19549/j.issn.1001-683x.2011.07.011

    XU Qi-rui, LIU Feng. Development and application of rail flaw detection car[J]. China Railway, 2011(7): 44-47. (in Chinese) doi: 10.19549/j.issn.1001-683x.2011.07.011
    [20] WU F P, LI Q H, LI S P, et al. Train rail defect classification detection and its parameters learning method[J]. Measurement, 2020, 151: 107246. doi: 10.1016/j.measurement.2019.107246
    [21] FUJINO Y, SIRINGORINGO D M. Recent research and development programs for infrastructures maintenance, renovation and management in Japan[J]. Structure and Infrastructure Engineering, 2020, 16(1): 3-25. doi: 10.1080/15732479.2019.1650077
    [22] YASUDA N, MISAKI N, SHIMADA Y, et al. Applicability of non-contact inspection using laser ablation-induced vibration in a reinforced concrete tunnel lining[J]. Tunnelling and Underground Space Technology, 2021, 113: 103977. doi: 10.1016/j.tust.2021.103977
    [23] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003

    WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.003
    [24] CAORSI S, CEVINI G, BURRO F, et al. An innovative on-board processor for the real-time GPR monitoring of railway substructure conditions[C]//IEEE. Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar. New York: IEEE, 2007: 284-289.
    [25] AL-QADI I, XIE W, ROBERTS R. Optimization of antenna configuration in multiple-frequency ground penetrating radar system for railroad substructure assessment[J]. NDT & E International, 2010, 43(1): 20-28.
    [26] LI D Q, THOMPSON R, MARQUEZ P, et al. Development and implementation of a continuous vertical track-support testing technique[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1863(1): 68-73. doi: 10.3141/1863-09
    [27] LI M X D, BERGGREN E G. A study of the effect of global track stiffness and its variations on track performance: simulation and measurement[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(5): 375-382. doi: 10.1243/09544097JRRT361
    [28] WANG P, WANG L, CHEN R, et al. Overview and outlook on railway track stiffness measurement[J]. Journal of Modern Transportation, 2016, 24(2): 89-102. doi: 10.1007/s40534-016-0104-8
    [29] BERGGREN E G, KAYNIA A M, DEHLBOM B. Identification of substructure properties of railway tracks by dynamic stiffness measurements and simulations[J]. Journal of Sound and Vibration, 2010, 329(19): 3999-4016. doi: 10.1016/j.jsv.2010.04.015
    [30] MIKRUT S, KOHUT P, PYKA K, et al. Mobile laser scanning systems for measuring the clearance gauge of railways: state of play, testing and outlook[J]. Sensors, 2016, 16(5): 683. doi: 10.3390/s16050683
    [31] SHIMIZU M, OIZUMI J, MATSUOKA R, et al. Development of a novel system to measure a clearance of a passenger platform[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41: 573-580.
    [32] YAMASHITA Y, IKEDA M. Advanced active control of contact force between pantograph and catenary for high-speed trains[J]. Quarterly Report of RTRI, 2012, 53(1): 28-33. doi: 10.2219/rtriqr.53.28
    [33] 赵晓娜, 吴兴军, 徐根厚. 德国高速铁路接触网检测系统[J]. 中国铁路, 2008(9): 60-62. doi: 10.3969/j.issn.1001-683X.2008.09.016

    ZHAO Xiao-na, WU Xing-jun, XU Gen-hou. Catenary inspection system of German high-speed railway[J]. China Railway, 2008(9): 60-62. (in Chinese) doi: 10.3969/j.issn.1001-683X.2008.09.016
    [34] BRUNI S, BUCCA G, CARNEVALE M, et al. Pantograph-catenary interaction: recent achievements and future research challenges[J]. International Journal of Rail Transportation, 2018, 6(2): 57-82. doi: 10.1080/23248378.2017.1400156
    [35] LEE J H, PARK T W, OH H K, et al. Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line[J]. Vehicle System Dynamics, 2015, 53(8): 1117-1134. doi: 10.1080/00423114.2015.1025797
    [36] KIM J Y, KIM J P, KIM W S. Structure of integrated adaptive catenary inspection system for improved safety[J]. Journal of the Institute of Electronics and Information Engineers, 2015, 52(9): 147-152. doi: 10.5573/ieie.2015.52.9.147
    [37] 牛道安. 铁路基础设施全寿命检测技术与发展[J]. 铁道建筑, 2020, 60(4): 5-8, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202004003.htm

    NIU Dao-an. Technology and development of railway infrastructure lifetime inspection[J]. Railway Engineering, 2020, 60(4): 5-8, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202004003.htm
    [38] 侯智雄, 王昊, 戴鹏, 等. 铁路基础设施搭载式检测系统的研发[J]. 铁道建筑, 2020, 60(10): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202010031.htm

    HOU Zhi-xiong, WANG Hao, DAI Peng, et al. Research and development of on-board inspection system for railway infrastructure[J]. Railway Engineering, 2020, 60(10): 142-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202010031.htm
    [39] TSUNASHIMA H, NAGANUMA Y, MATSUMOTO A, et al. Japanese railway condition monitoring of tracks using in-service vehicle[J]. IET Conference Publications, DOI: 10.1049/cp.2011.0587.
    [40] NIELSEN J, BERGGREN E, LöLGEN T, et al. Overview of methods for measurement of track irregularities[R]. Gothenburg: Chalmers University of Technology, 2013.
    [41] 王保国, 张可新, 杨桉, 等. 高速铁路基础设施维护管理及综合维修体系研究[J]. 中国铁路, 2019(3): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201903004.htm

    WANG Bao-guo, ZHANG Ke-xin, YANG An, et al. High speed railway infrastructure maintenance management and comprehensive maintenance system[J]. China Railway, 2019(3): 10-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201903004.htm
    [42] 康熊, 王卫东, 李海浪. 高速综合检测列车关键技术研究[J]. 中国铁路, 2012(10): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201210002.htm

    KANG Xiong, WANG Wei-dong, LI Hai-lang. Research on key technologies of high-speed comprehensive inspection train[J]. China Railway, 2012(10): 3-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201210002.htm
    [43] 李海浪, 王卫东, 康洪军, 等. CRH380B-002高速综合检测列车总体架构设计[J]. 铁道建筑, 2014, 54(2): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201402037.htm

    LI Hai-lang, WANG Wei-dong, KANG Hong-jun, et al. Research on overall architecture of CRH380B-002 high-speed comprehensive inspection train[J]. Railway Engineering, 2014, 54(2): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201402037.htm
    [44] 王源, 徐金辉, 陈嵘, 等. 基于中点弦测法的轨道不平顺精确值数学模型研究[J]. 铁道建筑, 2015, 55(5): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505039.htm

    WANG Yuan, XU Jin-hui, CHEN Rong, et al. Research on mathematical model of accurate value of track irregularity based on midpoint chord measurement method[J]. Railway Engineering, 2015, 55(5): 139-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505039.htm
    [45] 魏世斌, 李颖, 赵延峰, 等. GJ-6型轨道检测系统的设计与研制[J]. 铁道建筑, 2012, 52(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201202030.htm

    WEI Shi-bin, LI Ying, ZHAO Yan-feng, et al. Design and development of GJ-6 track inspection system[J]. Railway Engineering, 2012, 52(2): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201202030.htm
    [46] 宋浩然, 田新宇, 戴鹏, 等. 高速铁路综合巡检车研制[J]. 中国铁路, 2021(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202106005.htm

    SONG Hao-ran, TIAN Xin-yu, DAI Peng, et al. Development of comprehensive patrol inspection vehicle of high speed railway[J]. China Railway, 2021(6): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202106005.htm
    [47] 徐其瑞, 石永生, 许贵阳, 等. GTC-80型钢轨探伤车及其运用[J]. 中国铁路, 2013(11): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201311014.htm

    XU Qi-rui, SHI Yong-sheng, XU Gui-yang, et al. Development and utilization of GTC-80 rail flaw detection car[J]. China Railway, 2013(11): 55-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201311014.htm
    [48] 潘振, 金花, 柴雪松, 等. 移动式线路动态加载试验车轨道刚度检测技术[J]. 铁道建筑, 2015, 55(6): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201506039.htm

    PAN Zhen, JIN Hua, CHAI Xue-song, et al. Track stiffness inspection technology based on moveable track loading vehicle[J]. Railway Engineering, 2015, 55(6): 143-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201506039.htm
    [49] 潘振. 基于加载车的普速铁路轨道刚度管理标准研究[J]. 铁道建筑, 2021, 61(3): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202103029.htm

    PAN Zhen. Research on track stiffness management standards of ordinary speed railway based on track loading vehicle[J]. Railway Engineering, 2021, 61(3): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202103029.htm
    [50] 张润宝, 杨志鹏. 接触网运行状态检测监测系统研究与实践[J]. 中国铁路, 2019(9): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201909013.htm

    ZHANG Run-bao, YANG Zhi-peng. Research and practice of operation state inspection and monitoring system of overhead contact line system[J]. China Railway, 2019(9): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201909013.htm
    [51] 盛良, 张克永, 张文轩, 等. 推动4C装置图像智能识别技术持续发展的思考[J]. 中国铁路, 2020(10): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010016.htm

    SHENG Liang, ZHANG Ke-yong, ZHANG Wen-xuan, et al. Thoughts on promoting the sustainable development of intelligent image identification technology of 4C device[J]. China Railway, 2020(10): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010016.htm
    [52] 牛道安, 柯在田, 刘维桢, 等. 高速铁路基础设施检测监测体系框架研究[J]. 中国铁路, 2020(10): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010002.htm

    NIU Dao-an, KE Zai-tian, LIU Wei-zhen, et al. Research on the inspection and monitoring system framework of high speed railway infrastructure[J]. China Railway, 2020(10): 9-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010002.htm
    [53] 刁巍巍, 岑敏仪, 江来伟, 等. 轨道检查仪异常数据发现与定位[J]. 测绘与空间地理信息, 2019, 42(7): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201907071.htm

    DIAO Wei-wei, CEN Min-yi, JIANG Lai-wei, et al. Abnormal data discovery and positioning of track geometry inspection instrument[J]. Geomatics and Spatial Information Technology, 2019, 42(7): 232-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201907071.htm
    [54] 贺文, 王俊平, 张敏, 等. 车载接触网运行状态检测装置系统设计及应用[J]. 机车电传动, 2020(1): 144-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202001036.htm

    HE Wen, WANG Jun-ping, ZHANG Min, et al. System design and application of on-board overhead catenary monitoring device[J]. Electric Drive for Locomotives, 2020(1): 144-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202001036.htm
    [55] 孙晨旭, 任小东, 李斌. 铁路轨旁设备设施视频检测识别系统[J]. 中国铁路, 2018(11): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201811021.htm

    SUN Chen-xu, REN Xiao-dong, LI Bin. Video detection and identification system for railway trackside equipment and facilities[J]. China Railway, 2018(11): 99-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201811021.htm
    [56] 阚峰. 列控设备动态监测系统运用案例分析[J]. 上海铁道科技, 2017(1): 146-148. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201701062.htm

    KAN Feng. Analysis on application cases of dynamic monitoring system for train control equipment[J]. Shanghai Railway Science and Technology, 2017(1): 146-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201701062.htm
    [57] 申瑞源. 动车组司机操控信息分析系统(EOAS)设计与实现[J]. 中国铁路, 2016(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201608001.htm

    SHEN Rui-yuan. Design and implementation of EMU engineer operation analysis system(EOAS)[J]. China Railway, 2016(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201608001.htm
    [58] 孙启民. 沪宁高速铁路GSM-R网络接口监测综合分析子系统设计与实现[J]. 铁路技术创新, 2011(增): 8-11.

    SUN Qi-min. Design and implementation of GSM-R network interface monitoring system on Shanghai-Nanjing High Speed Railway[J]. Railway Technical Innovation, 2011(S): 8-11. (in Chinese)
    [59] 冯栋, 赵林海. 基于机车信号远程监测系统的分路电阻在线估算方法[J]. 铁道学报, 2017, 39(4): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201704009.htm

    FENG Dong, ZHAO Lin-hai. Online estimation method of shunt resistance based on cab-signal remote monitoring system[J]. Journal of the China Railway Society, 2017, 39(4): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201704009.htm
  • 加载中
图(51) / 表(2)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  464
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回