留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像处理技术的低噪声微表处纹理与噪声评价

郑木莲 陈旺 王海阳

郑木莲, 陈旺, 王海阳. 基于图像处理技术的低噪声微表处纹理与噪声评价[J]. 交通运输工程学报, 2023, 23(1): 80-92. doi: 10.19818/j.cnki.1671-1637.2023.01.006
引用本文: 郑木莲, 陈旺, 王海阳. 基于图像处理技术的低噪声微表处纹理与噪声评价[J]. 交通运输工程学报, 2023, 23(1): 80-92. doi: 10.19818/j.cnki.1671-1637.2023.01.006
ZHENG Mu-lian, CHEN Wang, WANG Hai-yang. Evaluation of texture and noise of low-noise micro-surface based on image processing technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 80-92. doi: 10.19818/j.cnki.1671-1637.2023.01.006
Citation: ZHENG Mu-lian, CHEN Wang, WANG Hai-yang. Evaluation of texture and noise of low-noise micro-surface based on image processing technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 80-92. doi: 10.19818/j.cnki.1671-1637.2023.01.006

基于图像处理技术的低噪声微表处纹理与噪声评价

doi: 10.19818/j.cnki.1671-1637.2023.01.006
基金项目: 

国家自然科学基金项目 52078051

中央高校基本科研业务费专项资金项目 310821163502

山东省交通科技项目 Lujiaokeji [2017] 28

国家留学基金项目 202106560039

详细信息
    作者简介:

    郑木莲(1977-),女,山东蒙阴人,长安大学教授,工学博士,从事道路工程研究

  • 中图分类号: U416.2

Evaluation of texture and noise of low-noise micro-surface based on image processing technology

Funds: 

National Natural Science Foundation of China 52078051

Fundamental Research Funds for the Central Universities 310821163502

Transportation Science and Technology Project for Shandong Province Lujiaokeji [2017] 28

Foundation of China Scholarship Council 202106560039

More Information
  • 摘要: 分析了路面微表处噪声产生机理,设计了5种低噪声微表处,并与普通微表处进行对比,测试了不同微表处的构造深度及其噪声值;基于数字图像处理技术构建微表处纹理三维模型,挖掘相关纹理参数以评价不同微表处的构造和噪声特性;提出凸峰分布概率、凸峰面积占比2种路表纹理参数,并分析了该参数与室内噪声的相关性。分析结果表明:与普通中值级配微表处相比,低噪声级配微表处可降低噪声约3.1 dB;橡胶粉通过提高微表处的弹性和吸声特性降低表面构造和摆值,且掺入中值和低噪声级配微表处可分别降低噪声2.0与6.3 dB;水性环氧树脂通过改善微表处施工和易性,减少路面宏观纹理,且掺入中值级配的微表处能实现与低噪声级配微表处相似的降噪效果;基于表面纹理三维模型计算的像素差平均值与微表处的实际构造深度呈显著的线性关系,相关系数为0.94;中值级配和低噪声微表处的凸峰高度分布分别表现为一次函数和正态函数,级配的调整可显著减小低高度凸峰的分布率,且低高度的凸峰数量增加可丰富细观纹理,进而得出凸峰分布概率能够量化微表处纹理的分布特性;凸峰高度0.25 mm是各种微表处凸峰高度分布曲线的拐点,与所有凸峰高度的面积占比相比,凸峰高度大于0.25 mm的面积占比与微表处的噪声具有显著的线性相关性,相关系数为0.98。

     

  • 图  1  轮胎-路面噪声产生机理

    Figure  1.  Generation mechanism of tire-road noise

    图  2  中值与低噪声微表处的级配曲线

    Figure  2.  Gradation curves of medium and low-noise micro-surfaces

    图  3  微表处表面纹理的三维模型建立流程

    Figure  3.  3D modeling process of micro-surface texture

    图  4  微表处试件表面数字图像灰度处理

    Figure  4.  Digital image gray-scale processing of specimen micro-surface

    图  5  利用数字图像技术构造的微表处三维曲面

    Figure  5.  3D surfaces of micro-surfaces constructed by digital image technology

    图  6  数字图像法与铺砂法试验结果关系

    Figure  6.  Relationship between results by digital image method and sand paving method test

    图  7  不同微表处的纹理-抗滑-降噪特性

    Figure  7.  Surface texture, skid resistance and noise reduction properties of different micro-surfaces

    图  8  不同类型微表处凸峰高度分布

    Figure  8.  Distributions of convex peak heights of different micro-surfaces

    图  9  凸峰高度面积占比与室内噪声关系

    Figure  9.  Relationships between area proportion of convex peak height and indoor noise

    表  1  改性乳化沥青技术指标

    Table  1.   Technical indexes of modified emulsified asphalt

    筛余量/% 恩格拉黏度 蒸发残留物含量/% 蒸发残留物 贮存稳定性/%
    25 ℃针入度/0.1 mm 软化点/℃ 5 ℃延度/cm 1 d 5 d
    0.08 17 64.8 76.9 60.4 ≥100 0.7 4.1
    下载: 导出CSV

    表  2  不同微表处的原材料组成与配合比

    Table  2.   Compositions and proportions of raw materials of different micro-surfaces

    微表处 含量/%
    SBR乳化沥青 复合改性乳化沥青 水泥 橡胶粉 纤维
    MS-M 6.5 1.5 6.0
    MS-M-R 6.6 1.5 6.0
    MS-M-E 7.2 2.0 6.0
    MS-LN 7.4 2.0 6.0
    MS-LN-R 8.2 1.5 6.0 3.0 0.2
    MS-LN-E 8.4 1.5 6.0 3.0 0.2
    下载: 导出CSV
  • [1] 黎侃, 李新伟, 王端宜. 聚丙烯单丝纤维微表处路用性能研究[J]. 公路交通科技, 2013, 30(8): 17-22. doi: 10.3969/j.issn.1002-0268.2013.08.004

    LI Kan, LI Xin-wei, WANG Duan-yi. Study on road performances of micro-surfacing mixed with polypropylene filament fiber[J]. Journal of Highway and Transportation Research and Development, 2013, 30(8): 17-22. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.08.004
    [2] 徐剑, 秦永春, 黄颂昌. 微表处混合料路用性能研究[J]. 公路交通科技, 2002, 19(4): 39-42. doi: 10.3969/j.issn.1002-0268.2002.04.012

    XU Jian, QIN Yong-chun, HUANG Song-chang. Research on the performance of micro-surfacing mixture[J]. Journal of Highway and Transportation Research and Development, 2002, 19(4): 39-42. (in Chinese) doi: 10.3969/j.issn.1002-0268.2002.04.012
    [3] KOGBARA R B, MASAD E A, KASSEM E, et al. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements[J]. Construction and Building Materials, 2016, 114: 602-617. doi: 10.1016/j.conbuildmat.2016.04.002
    [4] 孙晓立, 张肖宁, 蔡旭. 不同类型微表处噪声特性的室内试验[J]. 公路交通科技, 2012, 29(2): 18-22, 39. doi: 10.3969/j.issn.1002-0268.2012.02.004

    SUN Xiao-li, ZHANG Xiao-ning, CAI Xu. Indoor experiment of noise characteristics of different types of micro-surfacing[J]. Journal of Highway and Transportation Research and Development, 2012, 29(2): 18-22, 39. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.02.004
    [5] LI Zhen, LIU Hao, DONG Yu-ming, et al. Design and text method of indoor noise for micro-surfacing mixture[C]//ASCE. Transportation Research Congress 2016: Innovations in Transportation Research Infrastructure. Reston: ASCE, 2018: 242-250.
    [6] CAO Li-ping, LIU Sheng-qiang, HOU Xiang-shen, et al. Low Noise Gradation Design for Micro-Surfacing Mix based on Indoor Noise Test Method[M]. Boca Raton: CRC Press, 2016.
    [7] 凌天清, 李耀楠, 董强, 等. 橡胶颗粒对微表处性能的影响及其降噪效果[J]. 交通运输工程学报, 2011, 11(5): 1-5. doi: 10.19818/j.cnki.1671-1637.2011.05.001

    LING Tian-qing, LI Yao-nan, DONG Qiang, et al. Influence of rubber particles on micro-surfacing performance and its noise-reduction effect[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 1-5. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.05.001
    [8] NOWOŚWIAT A, SOROCIAK W, ŹUCHOWSKI R. The impact of the application of thin emulsion mat microsurfacing on the level of noise in the environment[J]. Construction and Building Materials, 2020, 263: 120626. doi: 10.1016/j.conbuildmat.2020.120626
    [9] ZHAO Mei-ling, ZHAO Zhi-jie. Study on noise reduction mechanism and surface performance of crumb rubber micro-surfacing material[J]. Key Engineering Materials, 2014, 599: 257-260. doi: 10.4028/www.scientific.net/KEM.599.257
    [10] 郑南翔, 胡魁, 刘伟亮, 等. 低噪声微表处吸声特性的试验研究[J]. 武汉理工大学学报, 2012, 34(12): 57-60. doi: 10.3963/j.issn.1671-4431.2012.12.012

    ZHENG Nan-xiang, HU Kui, LIU Wei-liang, et al. Indoor experiment research of low-noise micro-surfacing sound-absorption characterization[J]. Journal of Wuhan University of Technology, 2012, 34(12): 57-60. (in Chinese) doi: 10.3963/j.issn.1671-4431.2012.12.012
    [11] 陈德. 沥青混合料表面构造图像评价方法及抗滑降噪性能预测研究[D]. 西安: 长安大学, 2015.

    CHEN De. Study on image-based texture analysis method and prediction of skid-resistance & tire/pavement noise reduction of HMA[D]. Xi'an: Chang'an University, 2015. (in Chinese)
    [12] WEI Ding-bang, LI Bo, ZHANG Zheng-wei, et al. Influence of surface texture characteristics on the noise in grooving concrete pavement[J]. Applied Sciences-Basel, 2018, 8(11): 2141. doi: 10.3390/app8112141
    [13] MILJKOVIĆ M, RADENBERG M, GOTTAUT C. Characterization of noise-reducing capacity of pavement by means of surface texture parameters[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 240-249. doi: 10.1061/(ASCE)MT.1943-5533.0000821
    [14] LIAO Gong-yun, SAKHAEIFAR M S, HEITZMAN M, et al. The effects of pavement surface characteristics on tire/pavement noise[J]. Applied Acoustics, 2014, 76: 14-23. doi: 10.1016/j.apacoust.2013.07.012
    [15] MILLER T, SWIERTZ D, TASHMAN L, et al. Characterization of asphalt pavement surface texture[J]. Transportation Research Record, 2012, 2295: 19-26. doi: 10.3141/2295-03
    [16] ASI I M. Evaluating skid resistance of different asphalt concrete mixes[J]. Building and Environment, 2007, 42(1): 325-329. doi: 10.1016/j.buildenv.2005.08.020
    [17] FWA T F. Skid resistance determination for pavement management and wet-weather road safety[J]. International Journal of Transportation Science and Technology, 2017, 6(3): 217-227. doi: 10.1016/j.ijtst.2017.08.001
    [18] GUO Fu-cheng, PEI Jian-zhong, ZHANG Jiu-peng, et al. Study on the skid resistance of asphalt pavement: a state-of-the-art review and future prospective[J]. Construction and Building Materials, 2021, 303: 124411. doi: 10.1016/j.conbuildmat.2021.124411
    [19] WEST R, TIMM D, WILLIS J R, et al. Phase Ⅳ NCAT pavement test track findings: draft report[R]. Auburn: Auburn University, 2012.
    [20] 李志栋, 黄晓明, 陈广秀, 等. 微表处高噪声形成机理及其多支点降噪模型[J]. 公路交通科技, 2012, 29(1): 1-10. doi: 10.3969/j.issn.1002-0268.2012.01.001

    LI Zhi-dong, HUANG Xiao-ming, CHEN Guang-xiu, et al. Mechanism of high noise at micro-surfacing and multi-support denoising model[J]. Journal of Highway and Transportation Research and Development, 2012, 29(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.01.001
    [21] 刘玉恒. 低噪声微表处关键技术研究[D]. 南京: 东南大学, 2016.

    LIU Yu-heng. Research of key technology of low-noise micro-surface[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [22] 魏伟. 降噪微表处路面性能及其变化规律的研究[D]. 北京: 北京建筑大学, 2015.

    WEI Wei. Study on performances and change laws of the noise reduction micro-surfacing pavement[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015. (in Chinese)
    [23] 郭峰伟, 陈小雪. 纤维微表处应用技术研究[J]. 石油沥青, 2007, 21(3): 48-50. doi: 10.3969/j.issn.1006-7450.2007.03.013

    GUO Feng-wei, CHEN Xiao-xue. Research of fiber micro-surfacing application technology[J]. Petroleum Asphalt, 2007, 21(3): 48-50. (in Chinese) doi: 10.3969/j.issn.1006-7450.2007.03.013
    [24] DENEUVILLERS C. Design of microsurfacings: methodology and applications[J]. European Roads Review, 2004, 2: 13-19.
    [25] CHEN De, ROOHI SEFIDMAZGI N, BAHIA H. Exploring the feasibility of evaluating asphalt pavement surface macro-texture using image-based texture analysis method[J]. Road Materials and Pavement Design, 2015, 16(2): 405-420. doi: 10.1080/14680629.2015.1016547
    [26] EL GENDY A, SHALABY A, SALEH M, et al. Stereo-vision applications to reconstruct the 3D texture of pavement surface[J]. International Journal of Pavement Engineering, 2011, 12(3): 263-273. doi: 10.1080/10298436.2010.546858
    [27] XIAO Yue, WANG Feng, CUI Pei-de, et al. Evaluation of fine aggregate morphology by image method and its effect on skid-resistance of micro-surfacing[J]. Materials, 2018, 11(6): 920. doi: 10.3390/ma11060920
    [28] BENNERT T, HANSON D, MAHER A, et al. Influence of pavement surface type on tire/pavement generated noise[J]. Journal of Testing and Evaluation, 2005, 33(2): 94-100.
    [29] HAMET J F. Tire/road noise: time domain Green's function for the orthotropic plate model[J]. Acta Acustica United with Acustica, 2001, 87(4): 470-474.
    [30] 彭彬, 黄晓明. 微表处路面噪音调查与研究[J]. 中外公路, 2008, 28(4): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200804021.htm

    PENG Bin, HUANG Xiao-ming. Investigation and research on pavement noise at micro-surfacing[J]. Journal of China and Foreign Highway, 2008, 28(4): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200804021.htm
    [31] 吕镇锋, 李波, 张正伟, 等. 刻槽混凝土路面表面纹理及其噪声的相关性统计分析[J]. 公路交通科技, 2015, 32(11): 14-19, 26. doi: 10.3969/j.issn.1002-0268.2015.11.003

    LYU Zhen-feng, LI Bo, ZHANG Zheng-wei, et al. Statistical analysis of correlation between surface texture and noise for grooved concrete pavement[J]. Journal of Highway and Transportation Research and Development, 2015, 32(11): 14-19, 26. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.11.003
    [32] LIU Qing-fan, SHALABY A. Relating concrete pavement noise and friction to three-dimensional texture parameters[J]. International Journal of Pavement Engineering, 2017, 18(5): 450-458. doi: 10.1080/10298436.2015.1095897
    [33] CHEN Zhang, LIU Li-yuan, XU Ting-yi. Relationship between asphalt pavement surface characteristics and road noise[C]//ASCE. 16th COTA International Conference of Transportation Professionals (CICTP): Green and Multimodal Transportation and Logistics. Reston: ASCE, 2016: 580-595.
    [34] CHEN De, LING Cheng, WANG Ting-ting, et al. Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions[J]. Construction and Building Materials, 2018, 173: 801-810. doi: 10.1016/j.conbuildmat.2018.04.062
    [35] MOON H Y, HA S W. Performance evaluation of exposed aggregate texturing in concrete pavement based on in-situ noise measurements[J]. Journal of the Korea Concrete Institute, 2003, 15(3): 504-511. doi: 10.4334/JKCI.2003.15.3.504
    [36] HONG S J, PARK S W, LEE S W. The effect of texture wavelength on the tire-pavement noise in asphalt concrete pavement[J]. Korean Society of Road Engineers, 2015, 17(1): 1-6.
    [37] VIEIRA T, SANDBERG U, ERLINGSSON S. Acoustical performance of winter tyres on in-service road surfaces[J]. Applied Acoustics, 2019, 153: 30-47. doi: 10.1016/j.apacoust.2019.03.025
    [38] LING Sen-lin, YU Fan, SUN Da-quan, et al. A comprehensive review of tire-pavement noise: generation mechanism, measurement methods, and quiet asphalt pavement[J]. Journal of Cleaner Production, 2021, 287: 125056. doi: 10.1016/j.jclepro.2020.125056
    [39] WINROTH J, KROPP W, HOEVER C, et al. Investigating generation mechanisms of tyre/road noise by speed exponent analysis[J]. Applied Acoustics, 2017, 115: 101-108. doi: 10.1016/j.apacoust.2016.08.027
    [40] 肖飞鹏, 王涛, 王嘉宇, 等. 橡胶沥青路面降噪技术原理与研究进展[J]. 中国公路学报, 2019, 32(4): 73-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904006.htm

    XIAO Fei-peng, WANG Tao, WANG Jia-yu, et al. Mechanism and research development of noise reduction technology of rubberized asphalt pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 73-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904006.htm
    [41] 李微, 韩森, 孙培, 等. 橡胶-纤维微表处混合料路用性能及降噪特性研究[J]. 铁道科学与工程学报, 2017, 14(8): 1623-1631. doi: 10.3969/j.issn.1672-7029.2017.08.008

    LI Wei, HAN Sen, SUN Pei, et al. Research on road performances and noise reduction characteristic of rubber-fiber micro-surfacing mixture[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1623-1631. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.08.008
    [42] 宁展. 低噪声橡胶粉微表处的制备及性能评价[D]. 西安: 长安大学, 2019.

    NING Zhan. Preparation and performance evaluation of low noise rubber particle-fiber micro-surfacing[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [43] 范贤鹏. 水性环氧树脂/SBR乳化沥青微表处制备及性能评价[D]. 西安: 长安大学, 2020.

    FAN Xian-peng. Preparation and performance evaluation of water-based epoxy resin/SBR emulsified asphalt micro-surface treatment[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [44] LIU Fu-qiang, ZHENG Mu-lian, FAN Xian-peng, et al. Properties and mechanism of waterborne epoxy resin-SBR composite modified emulsified asphalt[J]. Construction and Building Materials, 2021, 274: 122059. doi: 10.1016/j.conbuildmat.2020.122059
    [45] 曹丽萍, 侯相深, 张冉. 微表处混合料室内噪声测试方法[J]. 土木建筑与环境工程, 2012, 34(S2): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2012S2039.htm

    CAO Li-ping, HOU Xiang-shen, ZHANG Ran. Test method of indoor noise for micro-surfacing mix[J]. Journal of Civil, Architectural and Environmental Engineering, 2012, 34(S2): 173-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2012S2039.htm
    [46] 胡红松, 路国栋, 张争奇, 等. 不同路面加铺层抗滑降噪效果室内研究[J]. 铁道科学与工程学报, 2017, 14(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701008.htm

    HU Hong-song, LU Guo-dong, ZHANG Zheng-qi, et al. Indoor study on anti-sliding and noise-reducing of different pavement overlays[J]. Journal of Railway Science and Engineering, 2017, 14(1): 44-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701008.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  715
  • HTML全文浏览量:  261
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回