留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路钢轨擦伤形成影响因素

侯博文 秦家栋 高亮 马超智 刘秀波 王璞

侯博文, 秦家栋, 高亮, 马超智, 刘秀波, 王璞. 高速铁路钢轨擦伤形成影响因素[J]. 交通运输工程学报, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010
引用本文: 侯博文, 秦家栋, 高亮, 马超智, 刘秀波, 王璞. 高速铁路钢轨擦伤形成影响因素[J]. 交通运输工程学报, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010
HOU Bo-wen, QIN Jia-dong, GAO Liang, MA Chao-zhi, LIU Xiu-bo, WANG Pu. Influencing factors of rail burn formation for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010
Citation: HOU Bo-wen, QIN Jia-dong, GAO Liang, MA Chao-zhi, LIU Xiu-bo, WANG Pu. Influencing factors of rail burn formation for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010

高速铁路钢轨擦伤形成影响因素

doi: 10.19818/j.cnki.1671-1637.2023.01.010
基金项目: 

中央高校基本科研业务费专项资金项目 2022JBCZ009

中国国家铁路集团有限公司科技研究开发计划 P2021G053

国家自然科学基金项目 51827813

详细信息
    作者简介:

    侯博文(1985-),男,辽宁沈阳人,北京交通大学副教授,工学博士,从事铁路轨道结构与轨道动力学研究

    通讯作者:

    王璞(1988-),男,河北沧州人,中国铁道科学研究院集团有限公司副研究员,工学博士

  • 中图分类号: U238

Influencing factors of rail burn formation for high-speed railway

Funds: 

Fundamental Research Funds for the Central Universities 2022JBCZ009

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. P2021G053

National Natural Science Foundation of China 51827813

More Information
  • 摘要: 基于ANSYS显式动力分析建立了三维瞬态轮轨接触力-热耦合有限元模型,考虑了温度对热-弹塑性材料参数的影响;以初始温度30 ℃、轴重16 t、初始速度300 km·h-1、滑滚比30%工况为例,研究了车轮在经过钢轨典型断面前、中、后3个时刻下钢轨踏面的接触压力、有效塑性应变、温度分布及其变化特征;在此基础上,进一步分析了列车轴重、钢轨踏面状态、列车牵引和制动状态对钢轨踏面最大温升与最大接触压力的影响,并基于钢轨马氏体白蚀层的形成机制讨论了钢轨擦伤的形成机理。研究结果表明:在本文计算工况下,钢轨踏面最大接触压力为1 186.43 MPa,出现在接触区中心位置,车轮通过后钢轨内部存在部分残余热应力和机械应力,钢轨最大有效塑性应变为0.028 2,最大温升为554.55 ℃;随着列车轴重从12 t增大至16 t,钢轨最大温升由339.89 ℃增大至402.79 ℃;钢轨踏面摩擦因数由0.2增大至0.6时,钢轨最大温升由230.93 ℃增大至519.25 ℃;滑滚比由10%增大至40%时,车轮制动和牵引引起的钢轨最大温升分别由264.52 ℃和362.10 ℃增大至700.46 ℃和819.61 ℃,相同滑滚比条件下,牵引工况引起的钢轨最大温升大于制动工况引起的钢轨最大温升,其中在滑滚比增大至40%时,制动和牵引状态下钢轨踏面最高温度分别为700.46 ℃和819.61 ℃,钢轨最大温升均超过相变温度,可导致钢轨踏面产生马氏体白蚀层,从而形成钢轨踏面擦伤。

     

  • 图  1  理论分析模型

    Figure  1.  Theoretical analysis model

    图  2  力-热耦合计算流程

    Figure  2.  Mechanical-thermal coupling calculation process

    图  3  钢轨接触区及测点位置

    Figure  3.  Rail contact zone and test point locations

    图  4  钢轨接触区接触压力分布

    Figure  4.  Contact pressure distributions in rail contact zone

    图  5  钢轨接触压力和残余应力随时间的变化

    Figure  5.  Variations in rail contact pressure and residual stress with time

    图  6  钢轨接触区有效塑性应变分布

    Figure  6.  Effective plastic strain distributions in rail contact zone

    图  7  钢轨接触区温度分布

    Figure  7.  Temperature distributions in rail contact zone

    图  8  t2时刻钢轨踏面最高温度节点的温度变化

    Figure  8.  Temperature changes of highest temperature node on rail tread at t2

    图  9  相变温度与接触压力关系曲线

    Figure  9.  Relationship curve between phase transition temperature and contact pressure

    图  10  列车轴重对钢轨力-热特性的影响

    Figure  10.  Influences of train axle load on rail mechanical-thermal characteristics

    图  11  摩擦因数对钢轨力-热特性的影响

    Figure  11.  Influences of friction coefficient on rail mechanical-thermal characteristics

    图  12  制动对钢轨力-热特性的影响

    Figure  12.  Influences of braking on rail mechanical-thermal characteristics

    图  13  牵引对钢轨力-热特性的影响

    Figure  13.  Influences of traction on rail mechanical-thermal characteristics

    表  1  轮轨系统参数

    Table  1.   Wheel-rail system parameters

    部件 参数 数值
    钢轨、车轮 密度/(kg·m-3) 7 850
    屈服强度/MPa 随温度变化
    泊松比 随温度变化
    扣件 刚度/(N·m-1) 2.5×107
    阻尼/(N·s·m-1) 1.2×104
    一系悬挂 刚度/(N·m-1) 8.8×105
    阻尼/(N·s·m-1) 4.0×103
    悬挂质量/kg 8.0×103
    下载: 导出CSV

    表  2  材料力学性能参数

    Table  2.   Material mechanical performance parameters

    温度/℃ 弹性模量/GPa 泊松比 屈服强度/MPa 热膨胀系数/(10-6·℃-1) 硬化模量/GPa
    24 213 0.295 800.0 9.89 22.7
    230 201 0.307 802.1 10.82 26.9
    358 193 0.314 735.8 11.15 21.3
    452 172 0.320 649.4 11.27 15.6
    567 102 0.326 468.1 11.31 6.2
    704 50 0.334 362.0 11.28 1.0
    900 43 0.345 330.4 11.25 0.1
    下载: 导出CSV

    表  3  材料热性能参数

    Table  3.   Material thermal performance parameters

    温度/℃ 比热容/[J·(kg·℃)-1] 热传导系数/[W·(m·℃)-1]
    0 419.5 59.71
    350 629.5 40.88
    703 744.5 30.21
    704 652.5 30.18
    710 653.2 30.00
    800 657.7 25.00
    950 665.2 27.05
    1 200 677.3 30.46
    下载: 导出CSV
  • [1] 张博, 刘秀波. 基于机器视觉的圆斑状钢轨擦伤检测算法[J]. 铁道建筑, (2022-12-06)[2023-01-10]. https://kns.cnki.net/kcms/detail//11.2027.U.20221205.1837.005.html.

    ZHANG Bo, LIU Xiu-bo. Detection algorithm of circular spot rail squat based on machine vision[J]. Railway Engineering, (2022-12-06)[2023-01-10]. https://kns.cnki.net/kcms/detail//11.2027.U.20221205.1837.005.html. (in Chinese)
    [2] 常崇义, 蔡园武 李兰, 等. 高速轮轨黏着机理的研究进展及其应用[J]. 中国铁路, 2017(11): 24-32. doi: 10.19549/j.issn.1001-683x.2017.11.024

    CHANG Chong-yi, CAI Yuan-wu, LI Lan, et al. Research progress and application of the mechanism of high-speed wheel rail adhesion[J]. China Railway, 2017(11): 24-32. (in Chinese) doi: 10.19549/j.issn.1001-683x.2017.11.024
    [3] 魏堂建, 刘林芽, 李纪阳, 等. 客运专线钢轨擦伤原因分析[J]. 铁道科学与工程学报, 2015, 12(3): 489-495. doi: 10.19713/j.cnki.43-1423/u.2015.03.006

    WEI Tang-jian, LIU Lin-ya, LI Ji-yang, et al. Analysis the reason of passenger line's rail scratch[J]. Journal of Railway Science and Engineering, 2015, 12(3): 489-495. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2015.03.006
    [4] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm
    [5] 李闯, 张银花, 田常海, 等. 高速铁路钢轨服役状态及病害整治研究[J]. 铁道建筑, 2020, 60(8): 126-129, 142. doi: 10.3969/j.issn.1003-1995.2020.08.29

    LI Chuang, ZHANG Yin-hua, TIAN Chang-hai, et al. Study on rail service status and disease treatment of rail for high speed railway[J]. Railway Engineering, 2020, 60(8): 126-129, 142. (in Chinese) doi: 10.3969/j.issn.1003-1995.2020.08.29
    [6] DENG Xiang-yun, QIAN Zhi-wei, LI Zi-li, et al. Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring[J]. International Journal of Fatigue, 2018, 112: 94-105. doi: 10.1016/j.ijfatigue.2018.03.002
    [7] ZHOU Yan, MO Ji-liang, CAI Zhen-bing, et al. Third-body and crack behavior in white etching layer induced by sliding-rolling friction[J]. Tribology International, 2019, 140: 105882. doi: 10.1016/j.triboint.2019.105882
    [8] LIAN Qing-lin, ZHU Hong-tao, DENG Guan-yu, et al. Evolution of thermally induced white etching layer at rail surface during multiple wheel/train passages[J]. International Journal of Fatigue, 2022, 159: 106799. doi: 10.1016/j.ijfatigue.2022.106799
    [9] XU Tian, ZENG Dong-fang, LU Lian-tao, et al. Numerical investigation of the formation of white etching layer in wheel steel with high Si and Mn contents[J]. Engineering Failure Analysis, 2021, 122: 105286. doi: 10.1016/j.engfailanal.2021.105286
    [10] GUTIÉRREZ GUZMÁN F, SOUS C, VAN LIER H, et al. An energetic approach for the prognosis of thermally induced white etching layers in bearing steel 100CrMn6[J]. Tribology International, 2020, 143: 106096. doi: 10.1016/j.triboint.2019.106096
    [11] PAN Rui, REN Rui-ming, CHEN Chun-huan, et al. The microstructure analysis of white etching layer on treads of rails[J]. Engineering Failure Analysis, 2017, 82: 39-46. doi: 10.1016/j.engfailanal.2017.06.018
    [12] 董永刚, 仪帅, 黄鑫磊, 等. 重载列车紧急制动过程车轮踏面疲劳裂纹萌生寿命预测[J]. 中国铁道科学, 2021, 42(5): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202105014.htm

    DONG Yong-gang, YI Shuai, HUANG Xin-lei, et al. Prediction of fatigue crack initiation life of wheel tread during emergency braking of heavy haul train[J]. China Railway Science, 2021, 42(5): 123-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202105014.htm
    [13] WU Jun, PETROV R H, NAEIMI M, et al. Laboratory simulation of martensite formation of white etching layer in rail steel[J]. International Journal of Fatigue, 2016, 91: 11-20. doi: 10.1016/j.ijfatigue.2016.05.016
    [14] LIAN Qing-lin, DENG Guan-yu, AL-JUBOORI A, et al. Crack propagation behavior in white etching layer on rail steel surface[J]. Engineering Failure Analysis, 2019, 104: 816-829. doi: 10.1016/j.engfailanal.2019.06.067
    [15] BERNSTEINER C, MVLLER G, MEIERHOFER A, et al. Development of white etching layers on and experiments rails: simulations and experiments[J]. Wear, 2016, 366/367: 116-122. doi: 10.1016/j.wear.2016.03.028
    [16] LIAN Qing-lin, DENG Guan-yu, KIET-TIEU A, et al. Thermo- mechanical coupled finite element analysis of rolling contact fatigue and wear properties of a rail steel under different slip ratios[J]. Tribology International, 2020, 141: 105943. doi: 10.1016/j.triboint.2019.105943
    [17] NAEIMI M, LI Shao-guang, LI Zi-li, et al. Thermomechanical analysis of the wheel-rail contact using a coupled modelling procedure[J]. Tribology International, 2018, 117: 250-260. doi: 10.1016/j.triboint.2017.09.010
    [18] WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462. doi: 10.1016/j.applthermaleng.2016.12.136
    [19] 伏培林, 丁立, 赵吉中, 等. 考虑材料温度相关性的二维轮轨弹塑性滑动接触温升分析[J]. 力学学报, 2020, 52(5): 1245-1254. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005004.htm

    FU Pei-lin, DING Li, ZHAO Ji-zhong, et al. Frictional temperature analysis of two-dimensional elasto-plastic wheel-rail sliding contact with temperature-dependent material properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1245-1254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005004.htm
    [20] 刘洋, 蒋硕, 吴亚平, 等. 剥离掉块对轮轨滑动接触热弹塑性的影响[J]. 交通运输工程学报, 2016, 16(2): 46-55. doi: 10.19818/j.cnki.1671-1637.2016.02.006

    LIU Yang, JIANG Shuo, WU Ya-ping, et al. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 46-55. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.006
    [21] 杨新文, 顾少杰, 周顺华, 等. 30 t轴重重载铁路轮轨滑动接触引起的钢轨热相变分析[J]. 铁道学报, 2016, 38(7): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607012.htm

    YANG Xin-wen, GU Shao-jie, ZHOU Shun-hua, et al. Analysis of rail thermal phase transformation due to wheel-rail sliding contact for heavy-haul railway with 30 t axle-load[J]. Journal of the China Railway Society, 2016, 38(7): 84-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607012.htm
    [22] 王伟, 王彩芸, 郭俊, 等. 滚滑工况下轮轨摩擦生热分析[J]. 机械设计与制造, 2012(6): 135-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201206052.htm

    WANG Wei, WANG Cai-yun, GUO Jun, et al. Analysis of the frictional heating of wheel-rail in rolling-sliding case[J]. Machinery Design and Manufacture, 2012(6): 135-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201206052.htm
    [23] 文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16(5): 30-41. doi: 10.19818/j.cnki.1671-1637.2016.05.004

    WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.05.004
    [24] 王平, 刘奕斌, 高原, 等. 表面选区强化对钢轨波磨处轮轨滚动接触行为的影响[J]. 铁道学报, 2020, 42(5): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202005014.htm

    WANG Ping, LIU Yi-bin, GAO yuan, et al. A study on influence of surface strengthening on wheel-rail rolling contact behavior at rail corrugation[J]. Journal of the China Railway Society, 2020, 42(5): 105-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202005014.htm
    [25] 马超智, 辛涛, 高亮, 等. 基于改进摩擦功模型的轮轨滚动接触磨耗研究[J]. 铁道学报, 2019, 41(12): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201912008.htm

    MA Chao-zhi, XIN Tao, GAO Liang, et al. Study on wear of wheel-rail rolling contact based on improved friction work model[J]. Journal of the China Railway Society, 2019, 41(12): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201912008.htm
    [26] 连青林. 钢轨马氏体白蚀层相变及疲劳特性研究[D]. 北京: 北京交通大学, 2019.

    LIAN Qing-lin. Study on phase transformation and fatigue properties of martensite white etching layer of railway rail[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [27] SU Yun-shuai, LI Shu-xin, LU Si-yuan, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J]. International Journal of Fatigue, 2017, 105: 160-168.
    [28] 沈明学, 刘鹏, 周琰, 等. 轮轨界面摩擦学转变结构层特性及其研究进展[J]. 摩擦学学报, 2021, 41(5): 773-788. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202105018.htm

    SHEN Ming-xue, LIU Peng, ZHOU Yan, et al. Characteristics of tribological transition layers at wheel-rail interface and its research progress[J]. Tribology, 2021, 41(5): 773-788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202105018.htm
    [29] AL-JUBOORI A, ZHU H, WEXLER D, et al. Characterisation of white etching layers formed on rails subjected to different traffic conditions[J]. Wear, 2019, 436/437: 202998.
    [30] 张军, 王雪萍, 马贺. 第三介质对轮轨最大静摩擦因数影响的试验[J]. 机械工程学报, 2018, 54(18): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818016.htm

    ZHANG Jun, WANG Xue-ping, MA He. Experimental study on the influence of the third medium on the wheel/rail maximum static friction coefficient[J]. Journal of Mechanical Engineering, 2018, 54(18): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818016.htm
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  110
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回