留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小半径曲线钢轨波磨激扰下列车车内振动噪声特性

牛道安 魏子龙 孙宪夫 杨飞 柯在田

牛道安, 魏子龙, 孙宪夫, 杨飞, 柯在田. 小半径曲线钢轨波磨激扰下列车车内振动噪声特性[J]. 交通运输工程学报, 2023, 23(1): 143-155. doi: 10.19818/j.cnki.1671-1637.2023.01.011
引用本文: 牛道安, 魏子龙, 孙宪夫, 杨飞, 柯在田. 小半径曲线钢轨波磨激扰下列车车内振动噪声特性[J]. 交通运输工程学报, 2023, 23(1): 143-155. doi: 10.19818/j.cnki.1671-1637.2023.01.011
NIU Dao-an, WEI Zi-long, SUN Xian-fu, YANG Fei, KE Zai-tian. Train interior vibration and noise characteristics induced by rail corrugation with small-radius curves[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 143-155. doi: 10.19818/j.cnki.1671-1637.2023.01.011
Citation: NIU Dao-an, WEI Zi-long, SUN Xian-fu, YANG Fei, KE Zai-tian. Train interior vibration and noise characteristics induced by rail corrugation with small-radius curves[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 143-155. doi: 10.19818/j.cnki.1671-1637.2023.01.011

小半径曲线钢轨波磨激扰下列车车内振动噪声特性

doi: 10.19818/j.cnki.1671-1637.2023.01.011
基金项目: 

国家自然科学基金项目 52278465

中国国家铁路集团有限公司科技研究开发计划 P2021T013

详细信息
    作者简介:

    牛道安(1965-),男,河南巩义人,中国国家铁路集团有限公司正高级工程师,从事铁路基础设施检测与评估技术研究

    通讯作者:

    魏子龙(1988-),男,山东莱芜人,中国铁道科学研究院集团有限公司副研究员,工学博士

  • 中图分类号: U266.2

Train interior vibration and noise characteristics induced by rail corrugation with small-radius curves

Funds: 

National Natural Science Foundation of China 52278465

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. P2021T013

More Information
  • 摘要: 为探究小半径曲线钢轨波磨与车内振动噪声的关系,以高铁站区线路中出现的钢轨波磨为对象,开展了实车试验与轨面平直度现场测试;采用同步压缩小波变换提取了车厢内部振动与噪声信号的时频特征,并引入全局小波功率谱和小波能量比对信号进行量化分析;建立了波磨严重程度与车厢内振动噪声水平的关联关系,对比了车体与走行部构件之间动力响应的差异,探讨了波磨所在曲线半径对车内振动噪声的影响。研究结果表明:在小半径曲线地段,车厢内振动与噪声信号的优势频率为500~550 Hz,与钢轨波磨引起的轮轨冲击频率一致,且该频段的能量在波磨严重区段愈加显著;轴箱与转向架构架振动信号在500~550 Hz频带也存在能量峰值,而轴箱振动信号中出现的330、1 046 Hz等峰值频率被一系悬挂有效过滤,使得构架振动响应中未见此频率成分;在车厢内采集的各项信号中,车体垂向振动响应与钢轨波磨沿线路里程的分布特征最为相关,而车内噪声、纵/横向振动、侧滚运动的相关性次之,摇头运动的相关性最低;与直线和大半径曲线相比,小半径曲线区段的车体振动与噪声水平受钢轨波磨的影响更为显著。

     

  • 图  1  高速铁路小半径曲线地段钢轨波磨

    Figure  1.  Rail corrugations occurring at sections with small-radius curves for high-speed railway

    图  2  车内振动噪声测试

    Figure  2.  Train interior vibration and noise test

    图  3  轨面不平顺测试

    Figure  3.  Rail surface irregularity measurement

    图  4  试验区段的轨面不平顺

    Figure  4.  Rail surface irregularities at experimental section

    图  5  轨面不平顺粗糙度曲线

    Figure  5.  Roughness curves of rail surface irregularity

    图  6  轨面不平顺的移动幅值有效值

    Figure  6.  Effective values of moving amplitude of rail surface irregularity

    图  7  车内振动噪声的时频分布

    Figure  7.  Time-frequency distributions of train interior vibration and noise

    图  8  车内振动噪声在断面A1~A3处的全局小波功率谱

    Figure  8.  Global wavelet power spectra of train interior vibration and noise at sections A1-A3

    图  9  钢轨波磨幅值与车内振动噪声的关系

    Figure  9.  Relations between rail corrugation amplitude and train interior vibration and noise

    图  10  钢轨波磨分布与车内振动噪声的相关性

    Figure  10.  Correlations between rail corrugation distribution and train interior vibration and noise

    图  11  走形部构件垂向加速度的时频分布

    Figure  11.  Time-frequency distributions of vertical acceleration from running gear components

    图  12  走形部构件垂向加速度在断面A1~A3处的全局小波功率谱

    Figure  12.  Global wavelet power spectra of vertical acceleration from running gear components at sections A1-A3

    图  13  车辆各部件小波能量比

    Figure  13.  Wavelet energy ratios of different vehicle components

    图  14  直线试验区段的钢轨波磨

    Figure  14.  Rail corrugation occurring on straight line of experimental section

    图  15  不同曲线半径对应的全局小波功率谱

    Figure  15.  Global wavelet power spectra corresponding to different curve radii

    图  16  不同曲线半径对应的小波能量比

    Figure  16.  Wavelet energy ratios under different curve radii

  • [1] 周清跃, 刘丰收, 张银花, 等. 高速铁路轮轨匹配存在问题及对策[J]. 中国铁道科学, 2017, 38(5): 78-84. doi: 10.3969/j.issn.1001-4632.2017.05.11

    ZHOU Qing-yue, LIU Feng-shou, ZHANG Yin-hua, et al. Solutions for problems at wheel-rail interface in high speed railway[J]. China Railway Science, 2017, 38(5): 78-84. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.05.11
    [2] 赵鑫, 温泽峰, 王衡禹, 等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21(1): 1-35. doi: 10.19818/j.cnki.1671-1637.2021.01.001

    ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.001
    [3] MATSUMOTO A, SATO Y, ONO H, et al. Formation mechanism and countermeasures of rail corrugation on curved track[J]. Wear, 2002, 253(1/2): 178-184.
    [4] TORSTENSSON P T, SCHILKE M. Rail corrugation growth on small radius curves—measurements and validation of a numerical prediction model[J]. Wear, 2013, 303(1/2): 381-396.
    [5] 宋立忠, 冯青松, 孙坤, 等. 城市轨道交通高架钢轨波磨地段振动噪声试验[J]. 交通运输工程学报, 2021, 21(3): 159-168. doi: 10.19818/j.cnki.1671-1637.2021.03.009

    SONG Li-zhong, FENG Qing-song, SUN Kun, et al. Test on vibration noise of rail corrugation section on urban rail transit viaduct[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 159-168. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.009
    [6] GRASSIE S L. Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling[J]. Journal of Rail and Rapid Transit, 2012, 226(5): 542-557. doi: 10.1177/0954409712443492
    [7] JIN Xue-song, WEN Ze-feng, WANG Kai-yun, et al. Effect of passenger car curving on rail corrugation at a curved track[J]. Wear, 2006, 260(6): 619-633. doi: 10.1016/j.wear.2005.03.016
    [8] CORREA N, OYARZABAL O, VADILLO E G, et al. Rail corrugation development in high speed lines[J]. Wear, 2011, 271(9/10): 2438-2447.
    [9] NIELSEN J C O, IGELAND A. Vertical dynamic interaction between train and track influence of wheel and track imperfections[J]. Journal of Sound and Vibration, 1995, 187(5): 825-839. doi: 10.1006/jsvi.1995.0566
    [10] HAN Jian, XIAO Xin-biao, WU Yue, et al. Effect of rail corrugation on metro interior noise and its control[J]. Applied Acoustics, 2018, 130: 63-70. doi: 10.1016/j.apacoust.2017.09.007
    [11] 周信, 赵鑫, 韩健, 等. 波磨条件下地铁车轮瞬态滚动噪声特性研究[J]. 机械工程学报, 2018, 54(4): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804029.htm

    ZHOU Xin, ZHAO Xin, HAN Jian, et al. Study on transient rolling noise characteristics of subway wheel with rail corrugation[J]. Journal of Mechanical Engineering, 2018, 54(4): 196-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804029.htm
    [12] 李响, 任尊松, 王子. 基于梯形轨枕轨道振动特性的钢轨波磨研究[J]. 铁道学报, 2020, 42(10): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202010006.htm

    LI Xiang, REN Zun-song, WANG Zi. Study on rail corrugation of ladder-type sleeper track based on vibration characteristics[J]. Journal of the China Railway Society, 2020, 42(10): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202010006.htm
    [13] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318001.htm

    ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318001.htm
    [14] 刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm

    LIU Guo-yun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm
    [15] 张厚贵, 刘维宁, 杜林林, 等. 剪切型减振器扣件轨道钢轨波磨特性测量[J]. 北京交通大学学报, 2014, 38(4): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201404023.htm

    ZHANG Hou-gui, LIU Wei-ning, DU Lin-lin, et al. Rail corrugation characteristics of shear-type damping fastener track based on measurement[J]. Journal of Beijing Jiaotong University, 2014, 38(4): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201404023.htm
    [16] 李伟, 曾全君, 朱士友, 等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005

    LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.01.005
    [17] 祖宏林, 李谷, 张志超, 等. 高铁联调联试车辆动力学响应轮轨垂向力评判方法研究[J]. 中国铁路, 2019(7): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201907004.htm

    ZU Hong-lin, LI Gu, ZHANG Zhi-chao, et al. Evaluation method of wheel-rail vertical force of vehicle dynamic response for high-speed railway testing and commissioning[J]. China Railway, 2019(7): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201907004.htm
    [18] SADEGHI J, HASHEMINEZHAD A. Correlation between rolling noise generation and rail roughness of tangent tracks and curves in time and frequency domains[J]. Applied Acoustics, 2016, 107: 10-18.
    [19] PENG Hua, YAO Yu-fei, CAI Xiao-pei, et al. Field measurement analysis and control measures evaluation of metro vehicle noise caused by rail corrugation[J]. Applied Sciences, 2021, 11(23): 11190.
    [20] XIN Tao, WANG Sen, GAO Liang, et al. Field measurement of rail corrugation influence on environmental noise and vibration: a case study in China[J]. Measurement, 2020, 164: 108084.
    [21] 聂嘉兴, 余永革, 王金升, 等. 高速列车观光区噪声源识别及路径贡献分析[J]. 噪声与振动控制, 2020, 40(6): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202006035.htm

    NIE Jia-xing, YU Yong-ge, WANG Jin-sheng, et al. Analyses of noise source identification and path contribution in tourist cabins of high speed trains[J]. Noise and Vibration Control, 2020, 40(6): 198-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202006035.htm
    [22] 张捷, 肖新标, 王谛, 等. 350 km/h以上高速列车观光区噪声特性及其评价研究[J]. 铁道学报, 2012, 34(10): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201210004.htm

    ZHANG Jie, XIAO Xin-biao, WANG Di, et al. Characteristics and evaluation of noises in the tourist cabin of a train running at more than 350 km/h[J]. Journal of the China Railway Society, 2012, 34(10): 23-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201210004.htm
    [23] 张捷, 肖新标, 张玉梅, 等. 基于航空噪声指标的高速列车观光区噪声评价[J]. 机械工程学报, 2013, 49(16): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316007.htm

    ZHANG Jie, XIAO Xin-biao, ZHANG Yu-mei, et al. Noise evaluation in the tourist cabin of high-speed train by using aircraft noise criterion[J]. Journal of Mechanical Engineering, 2013, 49(16): 33-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316007.htm
    [24] GRASSIE S L. A practical methodology to prioritise reprofiling sites for corrugation removal[J]. Journal of Rail and Rapid Transit, 2020, 234(4): 362-369.
    [25] THAKUR G, BREVDO E, FUČKAR N S, et al. The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications[J]. Signal Processing, 2013, 93(5): 1079-1094.
    [26] JIANG Qing-tang, SUTER B W. Instantaneous frequency estimation based on synchrosqueezing wavelet transform[J]. Signal Processing, 2017, 138: 167-181.
    [27] HU Yue, TU Xiao-tong, LI Fu-cai. High-order synchrosqueezing wavelet transform and application to planetary gearbox fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 131: 126-151.
    [28] WEI Zi-long, BOOGAARD A, NÚÑEZ A, et al. An integrated approach for characterizing the dynamic behavior of the wheel-rail interaction at crossings[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(10): 2332-2344.
    [29] 张迅, 赵宇, 阮灵辉, 等. 基于小波变换分析箱梁振动噪声的时频特性[J]. 西南交通大学学报, 2020, 55(1): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202001014.htm

    ZHANG Xun, ZHAO Yu, RUAN Ling-hui, et al. Time-frequency characteristics of box-girder vibration and noise based on wavelet transform[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 109-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202001014.htm
    [30] BERMUDEZ-EDO M, BARNAGHI P, MOESSNER K. Analysing real world data streams with spatio-temporal correlations: entropy vs. Pearson correlation[J]. Automation in Construction, 2018, 88: 87-100.
    [31] DE MAN A P. DYNATRACK: a survey of dynamic railway track properties and their quality[D]. Delft: Delft University of Technology, 2002.
  • 加载中
图(16)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  90
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回