留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆传动系统变参小波流形融合故障诊断方法

王俊 王玉琦 轩建平 刘金朝 黄伟国 朱忠奎

王俊, 王玉琦, 轩建平, 刘金朝, 黄伟国, 朱忠奎. 车辆传动系统变参小波流形融合故障诊断方法[J]. 交通运输工程学报, 2023, 23(1): 170-183. doi: 10.19818/j.cnki.1671-1637.2023.01.013
引用本文: 王俊, 王玉琦, 轩建平, 刘金朝, 黄伟国, 朱忠奎. 车辆传动系统变参小波流形融合故障诊断方法[J]. 交通运输工程学报, 2023, 23(1): 170-183. doi: 10.19818/j.cnki.1671-1637.2023.01.013
WANG Jun, WANG Yu-qi, XUAN Jian-ping, LIU Jin-zhao, HUANG Wei-guo, ZHU Zhong-kui. Fault diagnosis method of vehicle transmission system based on manifold fusion of parameter-varying wavelet[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 170-183. doi: 10.19818/j.cnki.1671-1637.2023.01.013
Citation: WANG Jun, WANG Yu-qi, XUAN Jian-ping, LIU Jin-zhao, HUANG Wei-guo, ZHU Zhong-kui. Fault diagnosis method of vehicle transmission system based on manifold fusion of parameter-varying wavelet[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 170-183. doi: 10.19818/j.cnki.1671-1637.2023.01.013

车辆传动系统变参小波流形融合故障诊断方法

doi: 10.19818/j.cnki.1671-1637.2023.01.013
基金项目: 

国家重点研发计划 2020YFB2007700

国家自然科学基金项目 52275121

国家自然科学基金项目 51805342

国家自然科学基金项目 52075353

中国博士后科学基金项目 2021M692354

详细信息
    作者简介:

    王俊(1987-),男,湖北襄阳人,苏州大学副教授,工学博士,从事载运工具关键部件故障诊断研究

    通讯作者:

    黄伟国(1981-),男,安徽黄山人,苏州大学教授,工学博士

  • 中图分类号: U279.3

Fault diagnosis method of vehicle transmission system based on manifold fusion of parameter-varying wavelet

Funds: 

National Key Research and Development Program of China 2020YFB2007700

National Natural Science Foundation of China 52275121

National Natural Science Foundation of China 51805342

National Natural Science Foundation of China 52075353

China Postdoctoral Science Foundation 2021M692354

More Information
  • 摘要: 应用流形学习方法非线性融合信号在不同小波参数下中央尺度对应的小波包络,研究了强背景噪声下车辆传动系统振动信号故障瞬态脉冲包络的有效提取问题,并与传统信号时频分解方法进行了对比研究;采用不同小波参数对振动信号进行连续小波变换,提取了每组参数下中央尺度上的小波包络;采用基尼指数选择若干包含故障瞬态脉冲信息的小波包络,构造了高维小波包络矩阵;采用局部切空间排列算法对高维小波包络进行流形融合,获得了反映故障瞬态脉冲包络本质结构的小波包络流形;为了验证所提方法的有效性和优越性,采用不同方法对轨道车辆轮对轴承和汽车变速齿轮箱的故障振动信号进行了对比分析。研究结果表明:在分析轴承外圈故障信号时,所提方法基尼指数比传统信号时频分解方法提高27.32%以上;在分析齿轮磨损故障信号时,所提方法基尼指数比传统信号时频分解方法提高26.74%以上。可见,所提方法通过综合具有不同形态的变参小波包络,可以在无需优化小波参数情况下,对车辆传动系统中的不同关键部件故障振动信号具有较好的自适应性,提取的故障脉冲包络中的带内噪声少,故障脉冲特性明显,容易识别其频谱中的故障特征频率,是检测车辆传动系统故障的一种有效方法。

     

  • 图  1  仿真信号的波形及其功率谱

    Figure  1.  Waveforms and power spectra of simulated signals

    图  2  不同小波参数获得的TSD和其中央尺度对应的小波包络

    Figure  2.  TSDs and wavelet envelopes corresponding to central scales obtained by using different wavelet parameters

    图  3  变参小波流形融合的流程

    Figure  3.  Manifold fusion process of parameter-varying wavelet

    图  4  采用3种融合方法的结果

    Figure  4.  Results by using three fusion methods

    图  5  轨道车辆轮对轴承故障模拟试验台

    Figure  5.  Fault simulation test bench of wheelset bearings of railway vehicles

    图  6  具有外圈故障的轮对轴承振动信号

    Figure  6.  Vibration signals of wheelset bearing with an outer-race fault

    图  7  所提方法分析轮对轴承信号时中央尺度和最优近邻点个数的确定

    Figure  7.  Determinations of central scale and best neighborhood size when analyzing wheelset bearing signal by proposed method

    图  8  所提方法分析轮对轴承信号得到的包络及其功率谱

    Figure  8.  Envelopes and corresponding power spectra of wheelset bearing signal obtained by proposed method

    图  9  VMD方法分析轮对轴承信号得到的包络及其功率谱

    Figure  9.  Envelopes and corresponding power spectra of wheelset bearing signal obtained by VMD method

    图  10  EEMD方法分析轮对轴承信号得到的包络及其功率谱

    Figure  10.  Envelopes and corresponding power spectra of wheelset bearing signal obtained by EEMD method

    图  11  FK方法分析轮对轴承信号得到的包络及其功率谱

    Figure  11.  Envelopes and corresponding power spectra of wheelset bearing signal obtained by FK method

    图  12  不同方法分析轮对轴承信号所得结果的基尼指数

    Figure  12.  Gini indexes obtained by different methods for wheelset bearing signal

    图  13  汽车齿轮箱疲劳测试试验台

    Figure  13.  Fatigue test bench of automobile gearbox

    图  14  具有磨损故障的齿轮箱振动信号

    Figure  14.  Vibration signal of gearbox with wearing fault

    图  15  所提方法分析齿轮箱信号时中央尺度和最优近邻点个数的确定

    Figure  15.  Determinations of central scale and best neighborhood size when analyzing gearbox signal by proposed method

    图  16  所提方法分析齿轮箱信号得到的包络及其功率谱

    Figure  16.  Envelopes and corresponding power spectra of gearbox signal obtained by proposed method

    图  17  VMD方法分析齿轮箱信号得到的包络及其功率谱

    Figure  17.  Envelopes and corresponding power spectra of gearbox signal obtained by VMD method

    图  18  EEMD方法分析齿轮箱信号得到的包络及其功率谱

    Figure  18.  Envelopes and corresponding power spectra of gearbox signal obtained by EEMD method

    图  19  FK方法分析齿轮箱信号得到的包络及其功率谱

    Figure  19.  Envelopes and corresponding power spectra of gearbox signal obtained by FK method

    图  20  不同方法分析齿轮箱信号所得结果的基尼指数值

    Figure  20.  Values of Gini index of results obtained by different methods for gearbox signal

    表  1  所提方法分析轮对轴承信号时选取的小波参数

    Table  1.   Wavelet parameters selected when analyzing wheelset bearing signal by proposed method

    序号 fb/Hz fc/Hz 序号 fb/Hz fc/Hz
    1 3.0 1.6 6 10.5 0.8
    2 2.0 1.9 7 11.5 0.8
    3 2.5 1.6 8 19.5 0.6
    4 11.0 0.8 9 19.0 0.6
    5 20.0 0.6 10 12.0 0.8
    下载: 导出CSV

    表  2  所提方法分析齿轮箱信号时选取的小波参数

    Table  2.   Wavelet parameters selected when analyzing gearbox signal by proposed method

    序号 fb/Hz fc/Hz 序号 fb/Hz fc/Hz
    1 1.5 1.7 6 3.5 1.1
    2 5.0 0.9 7 1.0 2.0
    3 6.0 0.8 8 4.5 0.9
    4 6.5 0.8 9 8.0 0.7
    5 3.5 1.1 10 3.0 1.1
    下载: 导出CSV
  • [1] 韩清振, 何仁. 基于非线性Drive-shaft模型的车辆传动系统冲击响应[J]. 交通运输工程学报, 2019, 19(1): 119-126. doi: 10.3969/j.issn.1671-1637.2019.01.012

    HAN Qing-zhen, HE Ren. Shock response of vehicle powertrain based on nonlinear drive-shaft model[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 119-126. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.012
    [2] KARPAT F, DIRIK A E, DOǦAN O, et al. A novel AI-based method for spur gear early fault diagnosis in railway gearboxes[C]//IEEE. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). New York: IEEE, 2020: 1-6.
    [3] GIANNOULI E, PAPAELIAS M, AMINI A, et al. Detection and evaluation of rolling stock wheelset defects using acoustic emission[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2021, 63(7): 403-408. doi: 10.1784/insi.2021.63.7.403
    [4] KOO J S, OH H S. A new derailment coefficient considering dynamic and geometrical effects of a single wheelset[J]. Journal of Mechanical Science and Technology, 2014, 28(9): 3483-3498. doi: 10.1007/s12206-014-0809-8
    [5] 沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012

    SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
    [6] MONTEIRO R P, CERRADA M, CABRERA D R, et al. Using a support vector machine based decision stage to improve the fault diagnosis on gearboxes[J]. Computational Intelligence and Neuroscience, 2019, 2019: 1383752.
    [7] ŁUKASIEWICZ M, KAŁACZYŃSKI T, MUSIAŁ J, et al. Diagnostics of buggy vehicle transmission gearbox technical state based on modal vibrations[J]. Journal of Vibroengineering, 2014, 16(6): 3137-3145.
    [8] 孙丽萍, 陈果, 谭真臻. 基于核主成分分析的小波尺度谱图像特征提取[J]. 交通运输工程学报, 2009, 9(5): 62-66. doi: 10.3321/j.issn:1671-1637.2009.05.011

    SUN Li-ping, CHEN Guo, TAN Zhen-zhen. Image feature extraction from wavelet scalogram based on kernel principle component analysis[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5): 62-66. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.05.011
    [9] HUNAG Wei-guo, SONG Ze-shu, ZHANG Cheng, et al. Multi-source fidelity sparse representation via convex optimization for gearbox compound fault diagnosis[J]. Journal of Sound and Vibration, 2021, 496: 115879. doi: 10.1016/j.jsv.2020.115879
    [10] YANG Shao-pu, GU Xiao-hui, LIU Yong-qiang, et al. A general multi-objective optimized wavelet filter and its applications in fault diagnosis of wheelset bearings[J]. Mechanical Systems and Signal Processing, 2020, 145: 106914. doi: 10.1016/j.ymssp.2020.106914
    [11] 吴守军, 冯辅周, 吴春志, 等. 快速峭度谱用于复合行星齿轮故障特征提取[J]. 机械传动, 2019, 43(10): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201910028.htm

    WU Shou-jun, FENG Fu-zhou, WU Chun-zhi, et al. Application of fast kurtosis spectrum in fault feature extraction of compound planetary gear[J]. Journal of Mechanical Transmission, 2019, 43(10): 151-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201910028.htm
    [12] JIANG Xing-xing, WANG Jun, SHEN Chang-qing, et al. An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis[J]. Structural Health Monitoring, 2021, 20(5): 2708-2725. doi: 10.1177/1475921720970856
    [13] 李奕璠, 刘建新, 林建辉, 等. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.3969/j.issn.1671-1637.2015.01.008

    LI Yi-fan, LIU Jian-xin, LIN Jian-hui, et al. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.008
    [14] 秦娜, 王开云, 金炜东, 等. 高速列车转向架故障的经验模态熵特征分析[J]. 交通运输工程学报, 2014, 14(1): 57-64, 74. doi: 10.3969/j.issn.1671-1637.2014.01.010

    QIN Na, WANG Kai-yun, JIN Wei-dong, et al. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 57-64, 74. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.01.010
    [15] SU Zu-qiang, XU Hai-tao, LUO Jiu-fei, et al. Fault diagnosis method based on a new manifold learning framework[J]. Journal of Intelligent and Fuzzy Systems, 2018, 34(6): 3413-3427. doi: 10.3233/JIFS-169522
    [16] WANG Yi, TSE P W, TANG Bao-ping, et al. Kurtogram manifold learning and its application to rolling bearing weak signal detection[J]. Measurement, 2018, 127: 533-545. doi: 10.1016/j.measurement.2018.06.026
    [17] ZHUANG Zhe, DING Jian-ming, TAN A C, et al. Fault detection of high-speed train wheelset bearing based on impulse-envelope manifold[J]. Shock and Vibration, 2017, DOI: 10.1155/2017/2104720.
    [18] DAI Lei, LI Quan-chang, CHEN Yi-jie, et al. Complex scale feature extraction for gearbox via adaptive multi-mode manifold learning[J]. Measurement, 2021, 174: 108688. doi: 10.1016/j.measurement.2020.108688
    [19] WANG Jun, DU Gui-fu, ZHU Zhong-kui, et al. Fault diagnosis of rotating machines based on the EMD manifold[J]. Mechanical Systems and Signal Processing, 2020, 135: 106443. doi: 10.1016/j.ymssp.2019.106443
    [20] WANG Jun, HE Qing-bo. Wavelet packet envelope manifold for fault diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2515-2526. doi: 10.1109/TIM.2016.2566838
    [21] WANG Jun, HE Qing-bo, KONG Fan-rang. Multiscale envelope manifold for enhanced fault diagnosis of rotating machines[J]. Mechanical Systems and Signal Processing, 2015, 52/53: 376-392. doi: 10.1016/j.ymssp.2014.07.021
    [22] CHEN Jing-long, LI Zi-ping, PAN Jun, et al. Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2016, 70/71: 1-35. doi: 10.1016/j.ymssp.2015.08.023
    [23] WANG Yi, XU Guang-hua, LIANG Lin, et al. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 54/55: 259-276. doi: 10.1016/j.ymssp.2014.09.002
    [24] WANG Jun, HE Qing-bo. Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery[J]. Journal of Sound and Vibration, 2014, 333(11): 2450-2464. doi: 10.1016/j.jsv.2014.01.006
    [25] DING Chuang-cang, ZHAO Ming, LIN Jing, et al. Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings[J]. ISA Transactions, 2019, 88: 199-215.
    [26] ZHANG Zhen-yue, ZHA Hong-yuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (English Edition), 2004, 8(4): 406-424.
    [27] 江星星, 彭德民, 沈长青, 等. 快速固有成分滤波特征融合的轴承故障诊断方法[J]. 机械工程学报, 2022, 58(22): 1-11.

    JIANG Xing-xing, PENG De-min, SHEN Chang-qing, et al. The feature fusion of fast intrinsic component filtering for bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2022, 58(22): 1-11. (in Chinese)
    [28] WANG Dong. Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients[J]. Mechanical Systems and Signal Processing, 2018, 108: 360-368.
    [29] AOUABDI S, TAIBI M, BOURAS S, et al. Using multi-scale entropy and principal component analysis to monitor gears degradation via the motor current signature analysis[J]. Mechanical Systems and Signal Processing, 2017, 90: 298-316.
    [30] 许迪, 葛江华, 王亚萍, 等. 流形学习和M-KH-SVR的滚动轴承衰退预测[J]. 振动工程学报, 2018, 31(5): 892-901. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201805020.htm

    XU Di, GE Jiang-hua, WANG Ya-ping, et al. Prediction for rolling bearing performance degradation based on manifold learning and M-KH-SVR[J]. Journal of Vibration Engineering, 2018, 31(5): 892-901. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201805020.htm
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  156
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回