留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模式复合交通网脆弱性测度

王永岗 王龙健 刘志岗 任璐

王永岗, 王龙健, 刘志岗, 任璐. 多模式复合交通网脆弱性测度[J]. 交通运输工程学报, 2023, 23(1): 195-207. doi: 10.19818/j.cnki.1671-1637.2023.01.015
引用本文: 王永岗, 王龙健, 刘志岗, 任璐. 多模式复合交通网脆弱性测度[J]. 交通运输工程学报, 2023, 23(1): 195-207. doi: 10.19818/j.cnki.1671-1637.2023.01.015
WANG Yong-gang, WANG Long-jian, LIU Zhi-gang, REN Lu. Vulnerability metrics of multimodal composite transportation network[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 195-207. doi: 10.19818/j.cnki.1671-1637.2023.01.015
Citation: WANG Yong-gang, WANG Long-jian, LIU Zhi-gang, REN Lu. Vulnerability metrics of multimodal composite transportation network[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 195-207. doi: 10.19818/j.cnki.1671-1637.2023.01.015

多模式复合交通网脆弱性测度

doi: 10.19818/j.cnki.1671-1637.2023.01.015
基金项目: 

国家重点研发计划 2018YFB1600900

详细信息
    作者简介:

    王永岗(1977-),男,山东青州人,长安大学教授,工学博士,从事复杂交通网络与交通安全研究

    通讯作者:

    王龙健(1991-),男,黑龙江木兰人,长安大学工学博士研究生

  • 中图分类号: U113

Vulnerability metrics of multimodal composite transportation network

Funds: 

National Key Research and Development Program of China 2018YFB1600900

More Information
  • 摘要: 构建了多模式复合交通网络拓扑模型;在传统测度指标的基础上,从各交通方式的差异性、资源公平性和网络可达性相结合的新视角提出了适用于多模式复合交通网的脆弱性测度,分别为子网敏感度、站点分布均衡度和可达指数;选取3种不同攻击策略进行Python仿真,以特点鲜明的东南沿海发达地区和西南边境山区的实际综合交通网为例,对比分析了网络结构脆弱性的差异性和共同点,多重验证了指标的有效性、稳定性和适用性。研究结果表明:浙江省和云南省多模式复合交通网络均符合小世界网络特性,能够使各交通方式间优势互补,降低网络脆弱性;在3组贡献度参数取值下,无论采取何种攻击策略,当失效节点数量相同时,浙江省子网敏感度从大到小总体趋势为公路网、水运网、铁路网,云南省子网敏感度从大到小总体趋势为航空网、公路网、铁路网;浙江省和云南省的公路网站点分布的基尼系数分别为0.196和0.086,均为分布绝对平均,铁路网站点分布的基尼系数分别为0.559和0.702,均为分布差距悬殊,云南省机场分布的基尼系数为0.363,分布相对合理,浙江省水运网港口分布的基尼系数为0.672,分布差距悬殊,说明需要进一步完善铁路网、水运网和航空网的布局;持续攻击会造成多模式复合交通网络分裂出多个连通子图或孤立节点,使得网络可达性发生突变性下降,为避免这种现象的发生应尽早采取恢复措施。可见,提出的脆弱性测度可以有效刻画综合交通网脆弱性,并发现网络间脆弱性的差异性和共同点。

     

  • 图  1  Lorenz曲线

    Figure  1.  Lorenz curve

    图  2  浙江省MCTN拓扑结构

    Figure  2.  Topology structure of MCTN in Zhejiang Province

    图  3  云南省MCTN拓扑结构

    Figure  3.  Topology structure of MCTN in Yunnan Province

    图  4  云南省子网敏感度变化曲线

    Figure  4.  Subnetwork sensitivity change curves in Yunnan Province

    图  5  浙江省子网敏感度变化曲线

    Figure  5.  Subnetwork sensitivity change curves in Zhejiang Province

    图  6  云南省MCTN的网络效率变化曲线

    Figure  6.  Change curves of network efficiency of MCTN in Yunnan Province

    图  7  浙江省MCTN的网络效率变化曲线

    Figure  7.  Change curves of network efficiency of MCTN in Zhejiang Province

    图  8  云南省MCTN最大连通子图相对大小变化曲线

    Figure  8.  Relative size change curves of largest connected subgraph of MCTN in Yunnan Province

    图  9  浙江省MCTN最大连通子图相对大小变化曲线

    Figure  9.  Relative size change curves of largest connected subgraph of MCTN in Zhejiang Province

    图  10  浙江省站点分布Lorenz曲线

    Figure  10.  Lorenz curves of station distribution in Zhejiang Province

    图  11  云南省站点分布Lorenz曲线

    Figure  11.  Lorenz curves of station distribution in Yunnan Province

    图  12  云南省机场分布Lorenz曲线

    Figure  12.  Lorenz curves of airport distribution in Yunnan Province

    图  13  MCTN可达指数变化曲线

    Figure  13.  Accessibility indexes change curves of MCTN

    图  14  云南省铁路网

    Figure  14.  Railway network in Yunnan Province

    图  15  云南省铁路网络效率和最大连通子图相对大小变化曲线

    Figure  15.  Change curves of railway network efficiency and largest connected subgraph relative size in Yunnan Province

    图  16  浙江省铁路网

    Figure  16.  Railway network in Zhejiang Province

    图  17  浙江省铁路网络效率和最大连通子图相对大小变化曲线

    Figure  17.  Change curves of railway network efficiency and largest connected subgraph relative size in Zhejiang Province

    表  1  网络拓扑结构特性分析指标

    Table  1.   Analysis indexes of network topology structure characteristic

    指标 公式 变量描述
    网络效率 $ E=\frac{1}{N(N-1)} \sum_{i \neq j \in V} \frac{1}{d_{i j}}$ E为网络效率;N为网络节点数量;dij为节点vivj之间的最短路径长度,当2个节点间没有路径时dij=+∞
    最大连通子图相对大小 $ C_{\max }=\frac{n}{N}$ Cmax为最大连通子图相对大小;n为最大连通子图包含的节点数
    聚类系数 $ C_i=\frac{2 e_i}{k_i\left(k_i-1\right)}$ Ci为节点vi的聚类系数; ki为节点vi的度,即viki个邻居节点,则这ki个节点之间最多可能有ki(ki-1)/2条边;ei为这ki个节点之间实际存在的边数
    平均聚类系数 $ \bar{C}_i=\frac{1}{N} \sum_{i=1}^N C_i$ $ \bar{C}_i$为平均聚类系数
    平均最短路径长度 $ \bar{L}=\frac{2}{N(N-1)} \sum_{v_i, v_j \in V ; i \neq j} d_{i j}$ L为网络中任意2个节点vivj之间平均最短路径长度
    下载: 导出CSV

    表  2  国际基尼系数标准[31]

    Table  2.   Gini coefficient criterion of United Nations

    基尼系数 [0, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 1]
    等级 绝对平均 比较平均 相对合理 差距较大 差距悬殊
    下载: 导出CSV

    表  3  网络拓扑特性指标值

    Table  3.   Values of network topology characteristic indexes

    参数 浙江省 云南省
    公路网 铁路网 水运网 MCTN 公路网 铁路网 航空网 MCTN
    节点数 106 60 62 89 142 52 15 129
    边数 272 70 56 248 395 51 33 416
    平均度 5.132 2.333 1.807 5.573 5.563 1.962 4.400 6.450
    最大度 16 9 3 16 14 4 14 23
    平均聚类系数 0.405 0.044 0.000 0.422 0.411 0.000 0.500 0.505
    平均最短路径长度 5.043 7.001 8.457 4.337 5.159 8.042 1.686 3.303
    下载: 导出CSV

    表  4  贡献度参数取值含义

    Table  4.   Meanings of contribution parameter values

    参数取值 含义
    α=0.3,β=0.7 最大连通子图相对大小贡献度较大
    α=β=0.5 二者贡献度相同
    α=0.7,β=0.3 网络效率贡献度较大
    下载: 导出CSV

    表  5  站点分布均衡性

    Table  5.   Balance of station distribution

    参数 浙江省 云南省
    公路网 铁路网 水运网 公路网 铁路网
    基尼系数 0.196 0.559 0.672 0.086 0.702
    均衡等级 绝对平均 差距悬殊 差距悬殊 绝对平均 差距悬殊
    下载: 导出CSV
  • [1] MATTSSON L G, JENELIUS E. Vulnerability and resilience of transport systems—a discussion of recent research[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 16-34. doi: 10.1016/j.tra.2015.06.002
    [2] BERDICA K. An introduction to road vulnerability: what has been done, is done and should be done[J]. Transport Policy, 2002, 9(2): 117-127. doi: 10.1016/S0967-070X(02)00011-2
    [3] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87(19): 198701. doi: 10.1103/PhysRevLett.87.198701
    [4] TANG Ming, ZHOU Tao. Efficient routing strategies in scale-free networks with limited bandwidth[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(2): 026116. doi: 10.1103/PhysRevE.84.026116
    [5] 种鹏云, 帅斌. 基于复杂网络的危险品运输网络抗毁性测度分析[J]. 中南大学学报(自然科学版), 2014, 45(5): 1715-1723. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201405046.htm

    CHONG Peng-yun, SHUAI Bin. Measure of hazardous materials transportation network invulnerability based on complex network[J]. Journal of Central South University (Science and Technology), 2014, 45(5): 1715-1723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201405046.htm
    [6] LYU Lin-yuan, CHEN Duan-bing, REN Xiao-long, et al. Vital nodes identification in complex networks[J]. Physics Reports—Review Section of Physics Letters, 2016, 650: 1-63.
    [7] GUAN Zhi-hong, CHEN Long, QIAN Tong-hui. Routing in scale-free networks based on expanding betweenness centrality[J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(6): 1131-1138. doi: 10.1016/j.physa.2010.10.002
    [8] PETERMANN T, DE LOS RIOS P. Role of clustering and gridlike ordering in epidemic spreading[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): 066116. doi: 10.1103/PhysRevE.69.066116
    [9] 李成兵, 郝羽成, 王文颖. 城市群复合交通网络可靠性研究[J]. 系统仿真学报, 2017, 29(3): 565-571, 580. doi: 10.16182/j.issn1004731x.joss.201703014

    LI Cheng-bing, HAO Yu-cheng, WANG Wen-ying. Research on city agglomeration compound traffic reliability[J]. Journal of System Simulation, 2017, 29(3): 565-571, 580. (in Chinese) doi: 10.16182/j.issn1004731x.joss.201703014
    [10] ZHANG Dong-ming, DU Fei, HUANG Hong-wei, et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106: 230-243. doi: 10.1016/j.ssci.2018.03.023
    [11] 王绍博, 段伟, 秦娅风, 等. 高铁网络空间组织模式及其脆弱性评估: 以长三角为例[J]. 资源科学, 2022, 44(5): 1079-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202205016.htm

    WANG Shao-bo, DUAN Wei, QIN Ya-feng, et al. Spatial organization model and its vulnerability assessment of high-speed rail network: taking the Yangtze River Delta as an example[J]. Resources Science, 2022, 44(5): 1079-1089. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202205016.htm
    [12] ZHANG Jian-hua, HU Fu-nian, WANG Shu-liang, et al. Structural vulnerability and intervention of high speed railway networks[J]. Physica A: Statistical Mechanics and its Applications, 2016, 462: 743-751. doi: 10.1016/j.physa.2016.06.132
    [13] VOLTES-DORTA A, RODRÍGUEZ-DÉNIZ H, SUAU-SANCHEZ P. Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: ranking the most critical airports[J]. Transportation Research Part A: Policy and Practice, 2017, 96: 119-145. doi: 10.1016/j.tra.2016.12.009
    [14] ZHANG Qian, YU Hao, LI Zhen-ning, et al. Assessing potential likelihood and impacts of landslides on transportation network vulnerability[J]. Transportation Research Part D: Transport and Environment, 2020, 82: 102304. doi: 10.1016/j.trd.2020.102304
    [15] NOGAL M, MORALES NÁPOLES O, O'CONNOR A. Structured expert judgement to understand the intrinsic vulnerability of traffic networks[J]. Transportation Research Record, 2019, 127: 136-152.
    [16] WU Jing, ZHANG Di, WAN Cheng-peng, et al. Novel approach for comprehensive centrality assessment of ports along the maritime silk road[J]. Transportation Research Record, 2019, 2673(9): 461-470. doi: 10.1177/0361198119847469
    [17] 冯慧芳, 李彩虹, 王瑞. 河谷型城市公交网络脆弱性研究: 以兰州市为例[J]. 交通运输系统工程与信息, 2016, 16(1): 217-222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201601034.htm

    FENG Hui-fang, LI Cai-hong, WANG Rui. Vulnerability study for public transport network of valley city: case of Lanzhou[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 217-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201601034.htm
    [18] ZHANG Lin, WEN Hui-ying, LU Jian, et al. Vulnerability assessment and visualization of large-scale bus transit network under route service disruption[J]. Transportation Research Part D: Transport and Environment, 2020, 88: 102570. doi: 10.1016/j.trd.2020.102570
    [19] 马超群, 张爽, 陈权, 等. 客流特征视角下的轨道交通网络特征及其脆弱性[J]. 交通运输工程学报, 2020, 20(5): 208-216. doi: 10.19818/j.cnki.1671-1637.2020.05.017

    MA Chao-qun, ZHANG Shuang, CHEN Quan, et al. Characteristics and vulnerability of rail transit network based on perspective of passenger flow characteristics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 208-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.017
    [20] SUN Jian, GUAN Shi-tuo. Measuring vulnerability of urban metro network from line operation perspective[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 348-359. doi: 10.1016/j.tra.2016.09.024
    [21] ZHOU Yao-ming, WANG Jun-wei. Critical link analysis for urban transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 402-415. doi: 10.1109/TITS.2017.2700080
    [22] LIU Yang, YUAN Yun, SHEN Jie-yi, et al. Emergency response facility location in transportation networks: a literature review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(2): 153-169. (in Chinese)
    [23] STRANO E, SHAI S, DOBSON S, et al. Multiplex networks in metropolitan areas: generic features and local effects[J]. Journal of the Royal Society Interface, 2015, 12(111): 20150651.
    [24] BAGGAG A, ABBAR S, ZANOUDA T, et al. Resilience analytics: coverage and robustness in multi-modal transportation networks[J]. EPJ Data Science, 2018, 7: 14.
    [25] ZHENG Zhi-hao, HUANG Zhi-ren, ZHANG Fan, et al. Understanding coupling dynamics of public transportation networks[J]. EPJ Data Science, 2018, 7: 23.
    [26] HONG Liu, ZHONG Xin, OUYANG Min, et al. Vulnerability analysis of public transit systems from the perspective of urban residential communities[J]. Reliability Engineering and System Safety, 2019, 189: 143-156.
    [27] FENG Xiao, HE Shi-wei, CHEN Xu-chao, et al. Mitigating the vulnerability of an air-high-speed railway transportation network: from the perspective of predisruption response[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(3): 474-490.
    [28] LI Tao, RONG Li-li, YAN Ke-sheng. Vulnerability analysis and critical area identification of public transport system: a case of high-speed rail and air transport coupling system in China[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 55-70.
    [29] LI Tao, RONG Li-li. Spatiotemporally complementary effect of high-speed rail network on robustness of aviation network[J]. Transportation Research Part A: Policy and Practice, 2022, 155: 95-114.
    [30] SIENKIEWICZ J, HOŁYST J A. Statistical analysis of 22 public transport networks in Poland[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(4): 046127.
    [31] 代洪娜, 姚恩建, 刘莎莎, 等. 基于基尼系数的高速公路网流量不均衡性研究[J]. 交通运输系统工程与信息, 2017, 17(1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201701031.htm

    DAI Hong-na, YAO En-jian, LIU Sha-sha, et al. Flow inequality of freeway network based on Gini-coefficient[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 205-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201701031.htm
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  718
  • HTML全文浏览量:  182
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回