留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扇区空中交通风险态势网络建模与演化特征

张洪海 吕文颖 万俊强 杨磊

张洪海, 吕文颖, 万俊强, 杨磊. 扇区空中交通风险态势网络建模与演化特征[J]. 交通运输工程学报, 2023, 23(1): 222-241. doi: 10.19818/j.cnki.1671-1637.2023.01.017
引用本文: 张洪海, 吕文颖, 万俊强, 杨磊. 扇区空中交通风险态势网络建模与演化特征[J]. 交通运输工程学报, 2023, 23(1): 222-241. doi: 10.19818/j.cnki.1671-1637.2023.01.017
ZHANG Hong-hai, LYU Wen-ying, WAN Jun-qiang, YANG Lei. Network modeling and evolution characteristics for air traffic risk situation in sectors[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 222-241. doi: 10.19818/j.cnki.1671-1637.2023.01.017
Citation: ZHANG Hong-hai, LYU Wen-ying, WAN Jun-qiang, YANG Lei. Network modeling and evolution characteristics for air traffic risk situation in sectors[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 222-241. doi: 10.19818/j.cnki.1671-1637.2023.01.017

扇区空中交通风险态势网络建模与演化特征

doi: 10.19818/j.cnki.1671-1637.2023.01.017
基金项目: 

国家重点研发计划 2018YFE0208700

国家自然科学基金项目 71971114

详细信息
    作者简介:

    张洪海(1979-),男,山东菏泽人,南京航空航天大学教授,工学博士,从事空中交通管理、通用航空及无人机管控研究

  • 中图分类号: V355

Network modeling and evolution characteristics for air traffic risk situation in sectors

Funds: 

National Key Research and Development Program of China 2018YFE0208700

National Natural Science Foundation of China 71971114

More Information
  • 摘要: 为了准确感知空域内空中交通运行态势,提升飞行运行效能,研究了扇区空中交通风险态势的网络建模方法和演化特征,基于实测数据验证了方法的可行性与有效性;在扇区内以活跃航空器为网络节点,依据航空器位置偏差下的冲突关系构建连边,建立空中交通风险态势网络,利用连通分量的概念定义并识别网络内的航空器集群;基于航空器集群特征构建状态向量,进一步划分空中交通风险态势模式;以分类后的态势等级时序为基础,针对各模式的样本进行持续时间分析及建模,讨论了单一态势模式的生存特性与多模式间转移行为的偏好水平;为了验证方法的有效性,以广州管制AR05号扇区的实际数据为样本展开分析。研究结果表明:低风险至高风险模式的生存特性差异明显,平均生存周期分别为82.49、118.11、75.77、90.51 s,中等风险模式是估计生命周期最长且生存率最高的模式;在模式迁移的过程中,集群数目与规模相对简单的风险模式主要表现为前向可达性较高,而回迁及跃迁概率低于0.05;复杂程度较高的风险模式则表现出了较为明显的回迁行为,且概率会随着时间步长的增加(30、60、90、120 s)逐渐趋于稳定。可见,建立的空中交通风险态势网络模型能够较好反映空中交通风险态势信息,提出的演化分析方法可以为空中交通运行提供有益参考,从而发掘空中交通演变的科学规律。

     

  • 图  1  研究框架

    Figure  1.  Research framework

    图  2  导航规范服从的正态分布

    Figure  2.  Normal distributions of navigation specifications

    图  3  等效区域

    Figure  3.  Equivalence area

    图  4  空中交通风险态势时变网络

    Figure  4.  Time varying networks of air traffic risk situation

    图  5  LPA和WA的集群识别结果

    Figure  5.  Clusters identification results of LPA and WA

    图  6  不同时刻下的连通分量

    Figure  6.  Connected components at different times

    图  7  广州管制AR05扇区的空域结构与航迹

    Figure  7.  Airspace structure and flight path of Guangzhou control sector AR05

    图  8  轮廓系数与聚类数目

    Figure  8.  Silhouette coefficients and numbers of clusters

    图  9  风险模式的状态向量

    Figure  9.  State vectors of risk patterns

    图  10  风险模式的持续时间及出现频次

    Figure  10.  Durations and frequencies of risk patterns

    图  11  风险模式的小时占比

    Figure  11.  Hourly percentages of risk patterns

    图  12  低风险模式持续时间分布

    Figure  12.  Distributions of duration for low risk pattern

    图  13  中等风险模式持续时间分布

    Figure  13.  Distributions of duration for medium risk pattern

    图  14  趋高风险模式持续时间分布

    Figure  14.  Distributions of duration for medium-high risk pattern

    图  15  高风险模式持续时间分布

    Figure  15.  Distributions of duration for high risk pattern

    图  16  风险模式的生命周期估计

    Figure  16.  Estimated life cycles of risk patterns

    图  17  风险模式的生存率

    Figure  17.  Survival rates of risk patterns

    图  18  风险模式生存时间的百分位数

    Figure  18.  Percentile values of survival time in risk patterns

    图  19  风险模式转移

    Figure  19.  Transition among risk patterns

    图  20  风险模式的转移概率

    Figure  20.  Transition probabilities of risk patterns

    图  21  不同时间步长下的风险模式转移概率

    Figure  21.  Transition probabilities of risk patterns under different time steps

    图  22  不同小时时段内的风险模式转移概率

    Figure  22.  Transition probabilities of risk patterns under different hourly time periods

    表  1  ADS-B数据格式

    Table  1.   Formats of ADS-B data

    呼号 经度/(°) 纬度/(°) 高度/m 速度/(km·h-1) 时刻
    SKW4310 -104.685 38.826 2 324.10 333.35 22:25:09
    SKW4310 -104.516 38.862 3 581.39 629.67 22:27:39
    SKW4310 -104.474 38.592 5 577.83 685.23 22:30:21
    SKW4310 -104.500 38.323 7 132.31 740.79 22:32:57
    下载: 导出CSV

    表  2  不同时刻下状态向量及风险模式

    Table  2.   State vectors and risk patterns at different times

    时间 O(t) 风险模式 时间 O(t) 风险模式
    N(t) L(t) N(t) L(t)
    8:00:00 1 1 低风险模式 12:09:00 3 8 趋高风险模式
    8:00:10 2 2 低风险模式 12:09:10 3 8 趋高风险模式
    8:00:20 2 2 低风险模式 12:09:20 3 8 趋高风险模式
    8:00:30 2 2 低风险模式 12:09:30 3 8 趋高风险模式
    8:00:40 3 2 中等风险模式 12:09:40 3 9 高风险模式
    8:00:50 3 2 中等风险模式 12:09:50 3 9 高风险模式
    下载: 导出CSV

    表  3  生存曲线检验结果

    Table  3.   Test results of survival curves

    日期 Log-Rank Breslow Tarone-Ware
    5月1日 0.000 005 8 0.001 497 0 0.000 148 3
    5月2日 0.002 527 1 0.000 105 2 0.000 241 3
    5月3日 0.000 301 2 0.014 227 5 0.003 898 7
    5月4日 0.024 056 7 0.000 488 9 0.001 110 4
    下载: 导出CSV
  • [1] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(增1): 721473. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm

    WU Xi-ping, YANG Hong-yu, HAN Song-chen. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm
    [2] 赵嶷飞, 肖瞳瞳, 万俊强. 中国民航空中交通管制体制演化[J]. 交通运输工程学报, 2020, 20(2): 100-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002009.htm

    ZHAO Yi-fei, XIAO Tong-tong, WAN Jun-qiang. Evolution of air traffic control system of Chinese civil aviation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 100-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002009.htm
    [3] 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学, 2021, 23(3): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202103020.htm

    ZHU Yong-wen, CHEN Zhi-jie, PU Fan, et al. Development of digital airspace system[J]. Strategic Study of CAE, 2021, 23(3): 135-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202103020.htm
    [4] 杨红雨, 杨波, 武喜萍, 等. 智能化空管技术研究与展望[J]. 工程科学与技术, 2018, 50(4): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804002.htm

    YANG Hong-yu, YANG Bo, WU Xi-ping, et al. Research and prospect of intellectualized air traffic management technology[J]. Advanced Engineering Sciences, 2018, 50(4): 12-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804002.htm
    [5] YANG Lei, YIN Su-wan, HU Ming-hua, et al. Empirical exploration of air traffic and human dynamics in terminal airspaces[J]. Transportation Research Part C: Emerging Technologies, 2017, 84: 219-244. doi: 10.1016/j.trc.2017.08.007
    [6] ZHANG Hong-hai, JIANG Cheng-peng, YANG Lei. Forecasting traffic congestion status in terminal areas based on support vector machine[J]. Advances in Mechanical Engineering, 2016, 8(9): 168781401666738.
    [7] 张洪海, 廖志华, 张启钱, 等. 终端区空域结构调整对进场交通流的影响[J]. 交通运输工程学报, 2016, 16(2): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201602013.htm

    ZHANG Hong-hai, LIAO Zhi-hua, ZHANG Qi-qian, et al. Impact of adjusting airspace structure on arrival traffic flow in terminal area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201602013.htm
    [8] 张晨. 空中交通管理中的交通行为复杂性研究[D]. 南京: 南京航空航天大学, 2012.

    ZHANG Chen. Research on the complexity of the traffic behaviors in air traffic management[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [9] DELAHAYE D, PUECHMOREL S, HANSMAN J, et al. Air traffic complexity map based on non-linear dynamical system[J]. Air Traffic Control Quarterly, 2004, 12(4): 367-388.
    [10] LI Shan-mei, XU Xiao-hao, MENG Ling-hang. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(4): 388-394.
    [11] LYU Wen-ying, ZHANG Hong-hai, WAN Jun-qiang, et al. Research on safety prediction of sector traffic operation based on a long short-term memory model[J]. Applied Sciences, 2021, 11: 5141.
    [12] 徐永祥. 扇区冲突风险评估方法研究[D]. 天津: 中国民航大学, 2015.

    XU Yong-xiang. Research on evaluation method of sector conflict risk[D]. Tianjin: Civil Aviation University of China, 2015. (in Chinese)
    [13] 张进, 胡明华, 张晨, 等. 空域复杂性建模[J]. 南京航空航天大学学报, 2010, 42(4): 454-460. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201004012.htm

    ZHANG Jin, HU Ming-hua, ZHANG Chen, et al. Airspace complexity modeling[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(4): 454-460. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201004012.htm
    [14] LU Fei, CHEN Zi-chen, CHEN Hui-yu. Lateral collision risk assessment of parallel routes in ocean area based on space-based ADS-B[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102970.
    [15] 赵嶷飞, 徐永祥, 王红勇. 基于航迹误差的空中交通冲突风险计算方法研究[J]. 安全与环境学报, 2016, 16(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201603005.htm

    ZHAO Yi-fei, XU Yong-xiang, WANG Hong-yong. On the air traffic conflict risk calculation method based on the track deviation study[J]. Journal of Safety and Environment, 2016, 16(3): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201603005.htm
    [16] 王红勇, 温瑞英. 基于复杂网络的空中交通态势风险评估方法[J]. 中国安全科学学报, 2018, 28(5): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm

    WANG Hong-yong, WEN Rui-ying. Research on assessment of risk in air traffic situation based on complex network[J]. China Safety Science Journal, 2018, 28(5): 172-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm
    [17] ZANIN M. Network analysis reveals patterns behind air safety events[J]. Physica A: Statistical Mechanics and Its Applications, 2014, DOI: 10.1016/j.physa.2014.01.032.
    [18] WANG Hong-yong, SONG Zi-qi, WEN Rui-ying, et al. Study on evolution characteristics of air traffic situation complexity based on complex network theory[J]. Aerospace Science and Technology, 2016, 58: 518-528.
    [19] WANG Hong-yong, XU Xiao-hao, ZHAO Yi-fei. Empirical analysis of aircraft clusters in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, DOI: 10.1177/0954410016660870.
    [20] WANG Hong-yong, WEN Rui-ying, ZHAO Yi-fei. Analysis of topological characteristics in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, DOI: 10.1177/0954410015578482.
    [21] WEN Xiang-xi, TU Cong-liang, WU Ming-gong, et al. Fast ranking nodes importance in complex networks based on LS-SVM method[J]. Physica A: Statistical Mechanics and Its Applications, 2018, DOI: 10.1016/j.physa.2018.03.076.
    [22] 李佳威, 吴明功, 温祥西, 等. 基于最小连通支配集的复杂网络关键节点与连边识别方法[J]. 系统工程与电子技术, 2019, 41(11): 2541-2549. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201911018.htm

    LI Jia-wei, WU Ming-gong, WEN Xiang-xi, et al. Identifying key nodes and edges of complex networks based on the minimum connected dominating set[J]. Systems Engineering and Electronics, 2019, 41(11): 2541-2549. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201911018.htm
    [23] WANG Ze-kun, WEN Xiang-xi, WU Ming-gong. Identification of key nodes in aircraft state network based on complex network theory[J]. IEEE Access, 2019, DOI: 10.1109/ACCESS.2019.2915508.
    [24] 李昂, 聂党民, 温祥西, 等. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202105017.htm

    LI Ang, NIE Dang-min, WEN Xiang-xi, et al. Operation situation assessment of control system based on interdependent network and SVM[J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202105017.htm
    [25] JIANG Xu-rui, WEN Xiang-xi, WU Ming-gong, et al. A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2019, DOI: 10.1016/j.physa.2019.01.129.
    [26] 张洪海, 汤一文, 许炎. TBO模式下终端区进场交通流优化模型与仿真分析[J]. 航空学报, 2020, 41(7): 325-338. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007028.htm

    ZHANG Hong-hai, TANG Yi-wen, XU Yan. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 325-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007028.htm
    [27] International Civil Aviation Organization. Performance based navigation manual[R]. Montréal: International Civil Aviation Organization, 2008.
    [28] BARABASI A L. Scale-free networks: a decade and beyond[J]. Science, 2009, 325(5939): 412-413.
    [29] DENG Zheng-hong, QIAO Hong-hai, GAO Ming-yu, et al. Complex network community detection method by improved density peaks model[J]. Physica A: Statistical Mechanics and Its Applications, 2019, DOI: 10.1016/j.physa.2019.121070.
    [30] 骆志刚, 丁凡, 蒋晓舟, 等. 复杂网络社团发现算法研究新进展[J]. 国防科技大学学报, 2011, 33(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201101012.htm

    LUO Zhi-gang, DING Fan, JIANG Xiao-zhou, et al. New progress on community detection in complex networks[J]. Journal of National University of Defense Technology, 2011, 33(1): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201101012.htm
    [31] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT201703008.htm

    YANG Xiao-bo, CHEN Chu-xiang, WANG Zhi-wan. LFM community detection algorithm based on vertex similarity[J]. Complex Systems and Complexity Science, 2017, 14(3): 85-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT201703008.htm
    [32] 陈晶, 万云. 社交网络中基于模块度最大化的标签传播算法的研究[J]. 通信学报, 2017, 38(2): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201702004.htm

    CHEN Jing, WAN Yun. Research on label propagation algorithm based on modularity maximization in the social network[J]. Journal on Communications, 2017, 38(2): 25-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201702004.htm
    [33] 牛新征, 牛嘉郡, 苏大壮, 等. 基于加权内容-结构网络和随机游走的社团划分算法[J]. 电子学报, 2017, 45(9): 2135-2142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201709012.htm

    NIU Xin-zheng, NIU Jia-jun, SU Da-zhuang, et al. Community detection based on weighted content-structural network and random walks[J]. Acta Electronica Sinica, 2017, 45(9): 2135-2142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201709012.htm
    [34] HECKMANN T, SCHWANGHART W, PHILLIPS J D. Graph theory—recent developments of its application in geomorphology[J]. Geomorphology, 2015, DOI: 10.1016/j.geomorph.2014.12.024.
    [35] 周红芳, 周扬, 张晓鹏, 等. 基于连通分量的分类变量聚类算法[J]. 控制与决策, 2015, 30(1): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201501006.htm

    ZHOU Hong-fang, ZHOU Yang, ZHANG Xiao-peng, et al. A clustering algorithm for categorical variables based on connected components[J]. Control and Decision, 2015, 30(1): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201501006.htm
    [36] 凤少伟, 凤超, 申浩. 基于K-means与GRU的短时交通流预测研究[J]. 计算机技术与发展, 2020, 30(7): 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202007028.htm

    FENG Shao-wei, FENG Chao, SHEN Hao. Research on short-term traffic flow prediction based on K-means and GRU[J]. Computer Technology and Development, 2020, 30(7): 125-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202007028.htm
    [37] LE Q A. Structural uncertainty of Markov models for advanced breast cancer: a simulation study of lapatinib[J]. Medical Decision Making, 2016, DOI: 10.1177/0272989X15622643.
    [38] GUYOT P, ADES A E, OUWENS M J N M, et al. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves[J]. BMC Medical Research Methodology, 2012, DOI: 10.1186/1471-2288-12-9.
    [39] PETO R, PETO J. Asymptotically efficient rank invariant test procedures[J]. Journal of the Royal Statistical Society, Series A, 1972, DOI: 10.2307/2344317.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  92
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回