留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑延误传播的枢纽机场航班时刻优化方法

曾维理 刘丹丹 杨磊 舒翔 包杰

曾维理, 刘丹丹, 杨磊, 舒翔, 包杰. 考虑延误传播的枢纽机场航班时刻优化方法[J]. 交通运输工程学报, 2023, 23(1): 242-255. doi: 10.19818/j.cnki.1671-1637.2023.01.018
引用本文: 曾维理, 刘丹丹, 杨磊, 舒翔, 包杰. 考虑延误传播的枢纽机场航班时刻优化方法[J]. 交通运输工程学报, 2023, 23(1): 242-255. doi: 10.19818/j.cnki.1671-1637.2023.01.018
ZENG Wei-li, LIU Dan-dan, YANG Lei, SHU Xiang, BAO Jie. Flight schedule optimization method for hub airport considering delay propagation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 242-255. doi: 10.19818/j.cnki.1671-1637.2023.01.018
Citation: ZENG Wei-li, LIU Dan-dan, YANG Lei, SHU Xiang, BAO Jie. Flight schedule optimization method for hub airport considering delay propagation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 242-255. doi: 10.19818/j.cnki.1671-1637.2023.01.018

考虑延误传播的枢纽机场航班时刻优化方法

doi: 10.19818/j.cnki.1671-1637.2023.01.018
基金项目: 

国家自然科学基金项目 62076126

江苏省自然科学基金项目 BK20190414

详细信息
    作者简介:

    曾维理(1983-),男,湖南邵阳人,南京航空航天大学副研究员,工学博士,从事机场运行规划与管理研究

  • 中图分类号: V355

Flight schedule optimization method for hub airport considering delay propagation

Funds: 

National Natural Science Foundation of China 62076126

Natural Science Foundation of Jiangsu Province BK20190414

More Information
  • 摘要: 为解决枢纽机场的航班时刻优化问题,提出了一种考虑延误传播的航班时刻优化方法;根据延误传播因果关系强弱来表征延误传播代价,建立了以最小延误传播代价和最大公平性的双目标函数;为了降低航班时刻存在的先天性延误和保证进离港航班的衔接性,引入了进离港点通行能力、常态化航路流量控制以及航班波特征等约束条件,构建了更加符合枢纽机场运行特征的优化模型;基于求解多目标函数的约束法,设计了两阶段求解算法,将多目标函数求解问题转化为单目标函数求解问题;以上海浦东国际机场为案例,从资源利用率和运行效率两方面进行了试验验证。研究结果表明:优化前4%的时刻属于跑道超负荷运行时刻,优化后不存在跑道超负荷运行时刻;优化前PIKAS和LAMEN大约有5%的时刻、NXD大约有2%的时刻处于超负荷运行,优化后没有进离港点超负荷运行;优化前离港航班平均延误为23 min,有超过50%的时刻延误大于10 min,优化后平均延误为3 min,超过60%的时刻延误小于5 min;优化前进港航班延误为28 min,优化后85%的时刻延误小于5 min;优化前后航班正常率分别为82%、99%,优化后航班正常率提升了17%。可见,优化后的航班时刻在时空分布上更加合理,能够显著提高资源利用率和航班正常率,降低航班延误。

     

  • 图  1  锯齿形航班波

    Figure  1.  Sawtooth flight wave

    图  2  上海浦东国际机场跑道和走廊口分布

    Figure  2.  Distributions of runways and corridors of Shanghai Pudong International Airport

    图  3  小时容量包络线

    Figure  3.  Hourly capacity envelopes

    图  4  原班期计划的小时航班量波形

    Figure  4.  Waveforms of hourly flight volume in original schedule

    图  5  上海浦东国际机场延误传播因果关系网络

    Figure  5.  Causal network of delay propagation at Shanghai Pudong International Airport

    图  6  航空公司平均偏移量上界和最大队长与迭代次数之间的关系

    Figure  6.  Relationship between upper bound of average offset of airline and maximum queue length and number of iterations

    图  7  跑道资源利用率

    Figure  7.  Utilizations of runway

    图  8  进离港点利用率

    Figure  8.  Utilizations of arrival and departure points

    图  9  进离港航班的延误

    Figure  9.  Delays in arrival and departure flights

    图  10  不同延误程度的航班占比

    Figure  10.  Proportions of flights with different delay degrees

    表  1  不同机型的最小过站时间

    Table  1.   Minimum transit time of different models

    座位数 常见机型 最小过站时间/min
    ≤60 AT72、E145、CRJ等 40
    61~150 CRJ7、E190、A319、B737(700型以下)等 55
    151~250 B737(700型含以上)、B752、B762、B787、A310、A320、A321等 65
    251~500 B747、B763、B777、A300、A330、A340、A350、MD11 75
    ≥501 A380 120
    下载: 导出CSV

    表  2  上海浦东国际机场的影响程度

    Table  2.   Impact of Shanghai Pudong International Airport

    起飞机场 目的地机场 影响程度值 起飞机场 目的地机场 影响程度值
    上海浦东国际机场 南充高坪机场 0.000 0 兰州中川国际机场 上海浦东国际机场 0.243 5
    台北桃园国际机场 上海浦东国际机场 0.008 2 威海大水泊机场 上海浦东国际机场 0.250 3
    万州五桥机场 上海浦东国际机场 0.015 0 上海浦东国际机场 潍坊机场 0.277 6
    临汾乔李机场 上海浦东国际机场 0.024 3 连云港白塔埠机场 上海浦东国际机场 0.304 9
    上海浦东国际机场 营口兰旗机场 0.025 5 合肥新桥国际机场 上海浦东国际机场 0.325 7
    上海浦东国际机场 南京禄口国际机场 0.026 7 上海浦东国际机场 连云港白塔埠机场 0.330 2
    上海浦东国际机场 南宁吴圩国际机场 0.034 9 遵义新舟机场 上海浦东国际机场 0.331 8
    兴义万峰林机场 上海浦东国际机场 0.036 7 吕梁大武机场 上海浦东国际机场 0.333 9
    淮安涟水机场 上海浦东国际机场 0.049 1 上海浦东国际机场 忻州五台山机场 0.338 2
    厦门高崎国际机场 上海浦东国际机场 0.049 8 长春龙嘉国际机场 上海浦东国际机场 0.357 5
    珠海金湾机场 上海浦东国际机场 0.076 5 上海浦东国际机场 唐山三女河机场 0.357 9
    上海浦东国际机场 重庆江北国际机场 0.077 5 上海浦东国际机场 鞍山腾鳌机场 0.363 6
    上海浦东国际机场 宁波栎社国际机场 0.082 8 桂林两江国际机场 上海浦东国际机场 0.378 3
    成都双流国际机场 上海浦东国际机场 0.109 9 广元盘龙机场 上海浦东国际机场 0.432 2
    上海浦东国际机场 运城关公机场 0.126 6 济宁曲阜机场 上海浦东国际机场 0.437 7
    铜仁凤凰机场 上海浦东国际机场 0.152 3 上海浦东国际机场 威海大水泊机场 0.455 9
    惠州平潭机场 上海浦东国际机场 0.155 1 天津滨海国际机场 上海浦东国际机场 0.464 8
    井冈山机场 上海浦东国际机场 0.157 8 上海浦东国际机场 天津滨海国际机场 0.487 4
    忻州五台山机场 上海浦东国际机场 0.183 4 上海浦东国际机场 武汉天河国际机场 0.512 2
    绵阳南郊机场 上海浦东国际机场 0.184 5 上海浦东国际机场 井冈山机场 0.512 7
    包头二里半机场 上海浦东国际机场 0.185 3 上海浦东国际机场 合肥新桥国际机场 0.604 2
    沈阳桃仙国际机场 上海浦东国际机场 0.214 3 名古屋中部/新特丽亚机场 上海浦东国际机场 0.765 1
    石家庄正定国际机场 上海浦东国际机场 0.222 5 安顺黄果树机场 上海浦东国际机场 0.837 7
    上海浦东国际机场 济宁曲阜机场 0.226 9 长白山机场 上海浦东国际机场 0.840 5
    上海浦东国际机场 邯郸机场 0.243 4 重庆江北国际机场 上海浦东国际机场 0.840 5
    兰州中川国际机场 上海浦东国际机场 0.243 5 青岛流亭国际机场 上海浦东国际机场 1.000 0
    下载: 导出CSV
  • [1] 王莉莉, 王航臣. 突发事件下大规模空中交通流量管理的组合优化模型[J]. 航空学报, 2019, 40(8): 322898. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908018.htm

    WANG Li-li, WANG Hang-chen. Combined optimization method for large-scale air traffic flow management under emergencies[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 322898. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908018.htm
    [2] ABEYRATNE R I R. Management of airport congestion through slot allocation[J]. Journal of Air Transport Management, 2000, 6(1): 29-41. doi: 10.1016/S0969-6997(99)00019-8
    [3] JACQUILLAT A, ODONI A R. A roadmap toward airport demand and capacity management[J]. Transportation Research Part A: Policy and Practice, 2018, 114: 168-185. doi: 10.1016/j.tra.2017.09.027
    [4] ZOGRAFOS K G, MADAS M A, ANDROUTSOPOULOS K N. Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs[J]. Journal of Scheduling, 2017, 20: 3-24. doi: 10.1007/s10951-016-0496-7
    [5] BENLIC U. Heuristic search for allocation of slots at network level[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 488-509. doi: 10.1016/j.trc.2017.03.015
    [6] CASTELLI L, PELLEGRINI P, PESENTI R. Airport slot allocation in Europe: economic efficiency and fairness[J]. International Journal of Revenue Management, 2012, 6(1/2): 28-44. doi: 10.1504/IJRM.2012.044514
    [7] COROLLI L, LULLI G, NTAIMO L. The time slot allocation problem under uncertain capacity[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 16-29. doi: 10.1016/j.trc.2014.05.004
    [8] PELLEGRINI P, BOLIC T, CASTELLI L, et al. SOSTA: an effective model for the simultaneous optimisation of airport SloT allocation[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 99: 34-53. doi: 10.1016/j.tre.2016.12.006
    [9] WANG Dong-hai, ZHAO Qiu-hong. A simultaneous optimization model for airport network slot allocation under uncertain capacity[J]. Sustainability, 2020, 12(14): 5512. doi: 10.3390/su12145512
    [10] KLINGEBIEL D, KOSTERS D, REICHMUTH J. Modelling and Managing Airport Performance[M]. Hoboken: John Wiley and Sons, Inc., 2013.
    [11] ZOGRAFOS K G, ANDROUTSOPOULOS K N, MADAS M A. Minding the gap: optimizing airport schedule displacement and acceptability[J]. Transportation Research Part A: Policy and Practice, 2018, 114: 203-221. doi: 10.1016/j.tra.2017.09.025
    [12] WANG S, DRAKE J H, FAIRBROTHER J, et al. A constructive heuristic approach for single airport slot allocation problems[C]//IEEE. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). New York: IEEE, 2019: 1171-1178.
    [13] RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. Improving slot allocation at level 3 airports[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 32-54. doi: 10.1016/j.tra.2019.06.014
    [14] PELLEGRINI P, CASTELLI L, PESENTI R. Metaheuristic algorithms for the simultaneous slot allocation problem[J]. IET Intelligent Transport Systems, 2012, 6(4): 453-462. doi: 10.1049/iet-its.2011.0179
    [15] ZOGRAFOS K G, SALOURAS Y, MADAS M A. Dealing with the efficient allocation of scarce resources at congested airports[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 244-256. doi: 10.1016/j.trc.2011.10.008
    [16] PYRGIOTIS N, ODONI A. On the impact of scheduling limits: a case study at Newark liberty international airport[J]. Transportation Science, 2016, 50(1): 150-165. doi: 10.1287/trsc.2014.0564
    [17] RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. An optimization approach for airport slot allocation under IATA guidelines[J]. Transportation Research Part B: Methodological, 2018, 112: 132-156. doi: 10.1016/j.trb.2018.04.005
    [18] RIBEIRO N A, JACQUILLAT A, ANTUNES A P. A large-scale neighborhood search approach to airport slot allocation[J]. Transportation Science, 2019, 53(6): 1772-1797. doi: 10.1287/trsc.2019.0922
    [19] ANDROUTSOPOULOS K N, MANOUSAKIS E G, MADAS M A. Modeling and solving a bi-objective airport slot scheduling problem[J]. European Journal of Operational Research, 2020, 284: 135-151. doi: 10.1016/j.ejor.2019.12.008
    [20] 汪梦蝶, 胡明华, 赵征. 基于可接受调整量水平的航班时刻优化研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(4): 671-675, 681. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201904019.htm

    WANG Meng-die, HU Ming-hua, ZHAO Zheng. Research on flight schedule optimization based on acceptable adjustment level[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2019, 43(4): 671-675, 681. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201904019.htm
    [21] KATSIGIANNIS F A, ZOGRAFOS K G, FAIRBROTHER J. Modelling and solving the airport slot-scheduling problem with multi-objective, multi-level considerations[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102914. doi: 10.1016/j.trc.2020.102914
    [22] JACQUILLAT A, VAZE V. Balancing reliability, efficiency and equity in airport scheduling interventions[C]//ATM. 12th USA/Europe Air Traffic Management R & D Seminar. New York: ATM, 2017: 1-10.
    [23] JIANG Y, ZOGRAFOS K G. A decision making framework for incorporating fairness in allocating slots at capacity-constrained airports[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103039. doi: 10.1016/j.trc.2021.103039
    [24] FAIRBROTHER J, ZOGRAFOS K G. On the development of a fair and efficient slot scheduling mechanism at congested airports[C]//TRB. 2018 Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2018: 18-05366.
    [25] ZOGRAFOS K G, JIANG Y. A Bi-objective efficiency-fairness model for scheduling slots at congested airports[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 336-350. doi: 10.1016/j.trc.2019.01.023
    [26] FAIRBROTHER J, ZOGRAFOS K G, GLAZEBROOK K D. A slot-scheduling mechanism at congested airports that incorporates efficiency, fairness, and airline preferences[J]. Transportation Science, 2020, 54: 115-138. doi: 10.1287/trsc.2019.0926
    [27] ANDROUTSOPOULOS K N, MADAS M A. Being fair or efficient? A fairness-driven modeling extension to the strategic airport slot scheduling problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 130: 37-60. doi: 10.1016/j.tre.2019.08.010
    [28] JACQUILLAT A, ODONI A R. Congestion mitigation at John F. Kennedy international airport in New York city: Potential of schedule coordination[J]. Transport Research Record, 2014, 2400: 28-36. doi: 10.3141/2400-04
    [29] SANTOS B F, WORMER M M, ACHOLA T A O, et al. Airline delay management problem with airport capacity constraints and priority decisions[J]. Journal of Air Transport Management, 2017, 63: 34-44. doi: 10.1016/j.jairtraman.2017.05.003
    [30] JACQUILLAT A, VAZE V. Interairline equity in airport scheduling interventions[J]. Transportation Science, 2018, 52(4): 941-964. doi: 10.1287/trsc.2017.0817
    [31] 彭瑛, 胡明华, 李印风, 基于航班时刻优化的跑道运行容量提升方法[J]. 系统工程理论与实践, 2014, 34(10): 2695-2700. doi: 10.12011/1000-6788(2014)10-2695

    PENG Ying, HU Ming-hua, LI Yin-feng, Method of enhance runway operational capacity based on aircraft schedule optimization[J]. System Engineering—Theory and Practice, 2014, 34(10): 2695-2700. (in Chinese) doi: 10.12011/1000-6788(2014)10-2695
    [32] ZENG Wei-li, REN Yu-meng, WEI Wen-bin, et al. A data-driven flight schedule optimization model considering the uncertainty of operational displacement[J]. Computers and Operations Research, 2021, 133: 105328. doi: 10.1016/j.cor.2021.105328
    [33] MANLEY B, SHERRY L. Analysis of performance and equity in ground delay programs[J]. Transportation Research Part C: Emerging Technologies, 2010, 18: 910-920. doi: 10.1016/j.trc.2010.03.009
    [34] PYRGIOTIS N, MALONE K M, ODONI A. Modelling delay propagation within an airport network[J]. Transportation Research Part C: Emerging Technologies, 2013, 27: 60-75. doi: 10.1016/j.trc.2011.05.017
    [35] SIMAIAKIS I, BALAKRISHNAN H. A queuing model of the airport departure process[J]. Transportation Science, 2016, 50(1): 94-109. doi: 10.1287/trsc.2015.0603
    [36] JACQUILLAT A, ODONI A R. Endogenous control of service rates in stochastic and dynamic queuing models of airport congestion[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 73: 133-151. doi: 10.1016/j.tre.2014.10.014
    [37] JACQUILLAT A, ODONI A R. An integrated scheduling and operations approach to airport congestion mitigation[J]. Operations Research, 2015, 63(6): 1390-1410. doi: 10.1287/opre.2015.1428
    [38] JACQUILLAT A, ODONI A R, WEBSTER M D. Dynamic control of runway configurations and of arrival and departure service rates at JFK airport under stochastic queue conditions[J]. Transportation Science, 2017, 51 (1): 155-176. doi: 10.1287/trsc.2015.0644
    [39] ZANIN M, BELKOURA S, ZHU Y. Network analysis of Chinese air transport delay propagation[J]. Chinese Journal of Aeronautics, 2017, 30(2): 491-499. doi: 10.1016/j.cja.2017.01.012
    [40] DU Wen-bo, ZHANG Ming-yuan, ZHANG Yu, et al. Delay causality network in air transport systems[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 118: 466-476. doi: 10.1016/j.tre.2018.08.014
    [41] ZHANG Ming-yuan, ZHOU Xu-ting, ZHANG Yu, et al. Propagation index on airport delays[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(8): 536-543. doi: 10.1177/0361198119844240
    [42] NAUTA M, BUCUR D, SEIFERT C. Causal Discovery with attention-based convolutional neural networks[J]. Machine Learning and Knowledge Extraction, 2019, 1(1): 312-340. doi: 10.3390/make1010019
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  98
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回