留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微胶囊沥青自愈合行为与微观机理

纪小平 姚秉辰 司伟 王朝辉 易珂 何树鹏 张雪君

纪小平, 姚秉辰, 司伟, 王朝辉, 易珂, 何树鹏, 张雪君. 微胶囊沥青自愈合行为与微观机理[J]. 交通运输工程学报, 2023, 23(2): 67-77. doi: 10.19818/j.cnki.1671-1637.2023.02.004
引用本文: 纪小平, 姚秉辰, 司伟, 王朝辉, 易珂, 何树鹏, 张雪君. 微胶囊沥青自愈合行为与微观机理[J]. 交通运输工程学报, 2023, 23(2): 67-77. doi: 10.19818/j.cnki.1671-1637.2023.02.004
JI Xiao-ping, YAO Bing-chen, SI Wei, WANG Chao-hui, YI Ke, HE Shu-peng, ZHANG Xue-jun. Self-healing behavior and microscopic mechanism of microencapsulated asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 67-77. doi: 10.19818/j.cnki.1671-1637.2023.02.004
Citation: JI Xiao-ping, YAO Bing-chen, SI Wei, WANG Chao-hui, YI Ke, HE Shu-peng, ZHANG Xue-jun. Self-healing behavior and microscopic mechanism of microencapsulated asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 67-77. doi: 10.19818/j.cnki.1671-1637.2023.02.004

微胶囊沥青自愈合行为与微观机理

doi: 10.19818/j.cnki.1671-1637.2023.02.004
基金项目: 

国家重点研发计划 2021YFB2601000

国家自然科学基金项目 52278430

中央高校基本科研业务费专项资金项目 300102212906

陕西省创新能力支撑计划 2022TD-07

详细信息
    作者简介:

    纪小平(1982-),男,浙江温州人,长安大学教授,工学博士,从事道路工程研究

    通讯作者:

    司伟(1986-),男,甘肃会宁人,长安大学副教授,工学博士

  • 中图分类号: U414

Self-healing behavior and microscopic mechanism of microencapsulated asphalt

Funds: 

National Key Research and Development Program of China 2021YFB2601000

National Natural Science Foundation of China 52278430

Fundamental Research Funds for the Central Universities 300102212906

Innovation Capability Support Program of Shaanxi Province 2022TD-07

More Information
  • 摘要: 为探究微胶囊沥青自愈合行为及其影响因素,采用原位聚合法制备微胶囊,以宏观试验与微观试验相结合的方法,从微胶囊的应力控释、毛细作用与扩散行为三方面揭示其自愈合行为的微观机理;进行了微胶囊沥青的拉拔-愈合-拉拔试验,采用自愈率(试件愈合后拉拔强度与初始拉拔强度之比)作为评价指标,考察了微胶囊掺量和愈合时间对微胶囊沥青自愈率的影响规律;进行了微胶囊沥青的动态剪切试验,对比疲劳试验前后微胶囊沥青的微观形态,考察微胶囊的应力控释特性;借助荧光显微镜,可视化了芯材在微裂缝中的横、纵向毛细作用与在沥青中的扩散过程;借助显微图像软件中的实时录像功能,观测微胶囊沥青微裂缝的愈合过程;采用红外光谱测试微胶囊芯材和拉拔-愈合-拉拔试验前后微胶囊沥青的官能团,考察芯材在沥青中的释放行为。分析结果表明:微胶囊掺量从0提升至8%时,自愈率从16.70%提高至48.92%,表明微胶囊沥青的自愈率随着微胶囊掺量的增加而逐渐增大,当微胶囊掺量为4%时,愈合120 min的自愈率是愈合10 min的1.85倍,表明微胶囊沥青的自愈率随着沥青愈合时间的延长而逐渐增大,这说明提高荷载休息期和微胶囊掺量对增强微胶囊沥青自愈合性能具有积极作用;微胶囊沥青的微观自愈合机理为,微裂缝尖端应力刺破微胶囊的囊壁而释放囊芯愈合剂,芯材在毛细管作用力的驱动下流动、扩散,并与附近的沥青接触、浸湿,从而达到修复沥青微裂缝的目的。

     

  • 图  1  微胶囊原位聚合法制备流程

    Figure  1.  Preparation process of microcapsule by in-situ polymerization

    图  2  微胶囊

    Figure  2.  Microcapsule

    图  3  拉拔-愈合-拉拔试验

    Figure  3.  Pull-heal-pull test

    图  4  自愈率与微胶囊掺量的关系

    Figure  4.  Relationship between self-healing rate and microcapsule dosage

    图  5  微胶囊沥青自愈合过程

    Figure  5.  Self-healing process of microencapsulated asphalt

    图  6  拉拔后微胶囊沥青断面的FM图像

    Figure  6.  FM images of microencapsulated asphalt section after pulling

    图  7  DSR前后微胶囊沥青样的FM图像

    Figure  7.  FM images of microencapsulated asphalt before and after DSR

    图  8  囊芯的毛细作用

    Figure  8.  Capillary action of capsule core

    图  9  微胶囊芯材在微裂缝中的横向毛细流动行为

    Figure  9.  Transverse capillary flow behavior of microcapsule core material in microcrack

    图  10  微胶囊芯材在微裂缝中的纵向毛细流动行为

    Figure  10.  Longitudinal capillary flow behavior of microcapsule core material in microcracks

    图  11  微胶囊芯材在沥青中扩散的FM图像

    Figure  11.  FM images of diffusion of microcapsule core material in microencapsulated asphalt

    图  12  芯材与微胶囊沥青样品的红外光谱

    Figure  12.  Infrared spectra of core material and microencapsulated asphalt samples

    表  1  沥青试验结果

    Table  1.   Test result of asphalt

    25 ℃针入度/0.1 mm 软化点/℃ 10 ℃延度/cm 60 ℃动力黏度/(Pa·s)
    68.1 47.5 68 210
    下载: 导出CSV

    表  2  不同微胶囊掺量和愈合时间下的自愈率

    Table  2.   Self-healing rates under different microcapsule dosages and healing times

    微胶囊掺量/% 不同愈合时间(min)下的自愈率/%
    10 30 60 120
    0 8.74 12.91 19.66 25.50
    2 11.42 14.68 23.57 31.63
    4 18.13 27.46 40.28 51.59
    6 20.97 34.14 51.88 59.29
    8 22.57 37.89 60.71 74.52
    下载: 导出CSV
  • [1] MICAELO R, FREIRE A C, PEREIRA G. Asphalt self-healing with encapsulated rejuvenators: effect of calcium-alginate capsules on stiffness, fatigue and rutting properties[J]. Materials and Structures, 2020, 53(1): 20. doi: 10.1617/s11527-020-1453-7
    [2] CHEN An-qi, ZHAO Yong-li, LI Peng-bo, et al. Crack propagation prediction of asphalt pavement after maintenance as a function of initial cracks distribution[J]. Construction and Building Materials, 2020, 231: 117157. doi: 10.1016/j.conbuildmat.2019.117157
    [3] 何亮, 李冠男, 熊汉江, 等. 钢砂SBS改性沥青混凝土裂纹的感应加热自修复性能[J]. 交通运输工程学报, 2018, 18(3): 11-18. doi: 10.3969/j.issn.1671-1637.2018.03.003

    HE Liang, LI Guan-nan, XIONG Han-jiang, et al. Induction heating activated self-healing of cracks in SBS modified asphalt concrete adding steel grits[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 11-18. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.003
    [4] NORAMBUENA-CONTRERAS J, YALCIN E, GARCIA A, et al. Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules[J]. Construction and Building Materials, 2018, 175: 254-266. doi: 10.1016/j.conbuildmat.2018.04.153
    [5] LI Jia, JI Xiao-ping, TANG Zhen-nong, et al. Preparation and evaluation of self-healing microcapsules for asphalt based on response surface optimization[J]. Journal of Applied Polymer Science, 2022, 139(1): 51430. doi: 10.1002/app.51430
    [6] GARCIA A, JELFS J, AUSTIN C J. Internal asphalt mixture rejuvenation using capsules[J]. Construction and Building Materials, 2015, 101: 309-316. doi: 10.1016/j.conbuildmat.2015.10.062
    [7] 纪小平, 杨自广, 周泽洪, 等. 密级配沥青混合料自愈性能的评价方法[J]. 中国公路学报, 2018, 31(11): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201811007.htm

    JI Xiao-ping, YANG Zi-guang, ZHOU Ze-hong, et al. Evaluation method for self-healing property of dense-graded asphalt mixture[J]. China Journal of Highway and Transport, 2018, 31(11): 51-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201811007.htm
    [8] NORAMBUENA-CONTRERAS J, LIU Quan-tao, ZHANG Lei, et al. Influence of encapsulated sunflower oil on the mechanical and self-healing properties of dense-graded asphalt mixtures[J]. Materials and Structures, 2019, 52(4): 78. doi: 10.1617/s11527-019-1376-3
    [9] JI Xiao-ping, LI Jia, HUA Wen-long, et al. Preparation and performance of microcapsules for asphalt pavements using interfacial polymerization[J]. Construction and Building Materials, 2021, 289: 123179. doi: 10.1016/j.conbuildmat.2021.123179
    [10] SUN Da-quan, LU Tong, ZHU Xing-yi, et al. Optimization of synthesis technology to improve the design of asphalt self- healing microcapsules[J]. Construction and Building Materials, 2018, 175: 88-103. doi: 10.1016/j.conbuildmat.2018.04.162
    [11] TABAKOVIĆ A, BRAAK D, VAN GERWEN M, et al. The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(4): 347-359. doi: 10.1016/j.jtte.2017.01.004
    [12] GARCÍA Á, SCHLANGEN E, VAN DE VEN M F C. How to make capsules containing rejuvenators for their use in asphalt concrete[J]. Journal of Wuhan University of Technology, 2010, 32(17): 18-21, 34.
    [13] 罗蓉, 石晨光, 冯光乐. 沥青自愈合性能评价指标修正及应用[J]. 中国公路学报, 2019, 32(11): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911010.htm

    LUO Rong, SHI Chen-guang, FENG Guang-le. Correction and application of self-healing performance index of asphalt binder[J]. China Journal of Highway and Transport, 2019, 32(11): 103-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911010.htm
    [14] XUE Bin, WANG Hui-feng, PEI Jian-zhong, et al. Study on self-healing microcapsule containing rejuvenator for asphalt[J]. Construction and Building Materials, 2017, 135: 641-649. doi: 10.1016/j.conbuildmat.2016.12.165
    [15] NORAMBUENA-CONTRERAS J, YALCIN E, HUDSON-GRIFFITHS R, et al. Mechanical and self-healing properties of stone mastic asphalt containing encapsulated rejuvenators[J]. Journal of Materials in Civil Engineering, 2019, 31(5): 04019052. doi: 10.1061/(ASCE)MT.1943-5533.0002687
    [16] 周璐, 黄卫东, 吕泉. 干湿条件下沥青自愈合性能评价与机理分析[J]. 建筑材料学报, 2021, 24(1): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202101020.htm

    ZHOU Lu, HUANG Wei-dong, LYU Quan. Evaluation and mechanism analysis of asphalt self-healing property under dry and wet conditions[J]. Journal of Building Materials, 2021, 24(1): 137-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202101020.htm
    [17] SU Jun-feng, WANG Li-qing, XIE Xin-ming, et al. Understanding the final surface state of self-healing microcapsules containing rejuvenator in bituminous binder of asphalt[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126287. doi: 10.1016/j.colsurfa.2021.126287
    [18] SHU Be-nan, WU Shao-peng, DONG Li-jie, et al. Microfluidic synthesis of polymeric fibers containing rejuvenating agent for asphalt self-healing[J]. Construction and Building Materials, 2019, 219: 176-183. doi: 10.1016/j.conbuildmat.2019.05.178
    [19] SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope[J]. Construction and Building Materials, 2017, 132: 230-239. doi: 10.1016/j.conbuildmat.2016.11.137
    [20] HOU Yue, WANG Lin-bing, PAULI T, et al. Investigation of the asphalt self-healing mechanism using a phase-field model[J]. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118. doi: 10.1061/(ASCE)MT.1943-5533.0001047
    [21] SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. A comprehensive review on self-healing of asphalt materials: mechanism, model, characterization and enhancement[J]. Advances in Colloid and Interface Science, 2018, 256: 65-93. doi: 10.1016/j.cis.2018.05.003
    [22] JI Xiao-ping, HAN Bo, HU Jian-ming, et al. Application of the discrete element method and CT scanning to investigate the compaction characteristics of the soil-rock mixture in the subgrade[J]. Road Materials and Pavement Design, 2022, 23(2): 397-413. doi: 10.1080/14680629.2020.1826350
    [23] 汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001

    WANG Hai-nian, DING He-yang, FENG Po-nan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.001
    [24] 谭忆秋, 李冠男, 单丽岩, 等. 沥青微观结构组成研究进展[J]. 交通运输工程学报, 2020, 20(6): 1-17. doi: 10.19818/j.cnki.1671-1637.2020.06.001

    TAN Yi-qiu, LI Guan-nan, SHAN Li-yan, et al. Research progress of bitumen microstructures and components[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 1-17. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.001
    [25] SUN Da-quan, LIN Tian-ban, ZHU Xing-yi, et al. Calculation and evaluation of activation energy as a self-healing indication of asphalt mastic[J]. Construction and Building Materials, 2015, 95: 431-436. doi: 10.1016/j.conbuildmat.2015.07.126
    [26] SCHAPERY R A. On the mechanics of crack closing and bonding in linear viscoelastic media[J]. International Journal of Fracture, 1989, 39 (1): 163-189.
    [27] GARCÍA Á. Self-healing of open cracks in asphalt mastic[J]. Fuel, 2012, 93: 264-272. doi: 10.1016/j.fuel.2011.09.009
    [28] 孙大权, 张立文, 梁果. 沥青混凝土疲劳损伤自愈合行为研究进展(1): 自愈合行为机理与表征方法[J]. 石油沥青, 2011, 25(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201105004.htm

    SUN Da-quan, ZHANG Li-wen, LIANG Guo. Review on self-healing behavior of asphalt concrete (1) mechanism and characterization methods of self-healing behavior[J]. Petroleum Asphalt, 2011, 25(5): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201105004.htm
    [29] LOEBER L, MULLER G, MOREL J, et al. Bitumen in colloid science: a chemical, structural and rheological approach[J]. Fuel, 1998, 77(13): 1443-1450.
    [30] HOU Yue, SUN Wen-juan, DAS P, et al. Coupled navier-stokes phase-field model to evaluate the microscopic phase separation in asphalt binder under thermal loading[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016100.
    [31] QIU J, VAN DE VEN M F C, WU S P, et al. Investigating self healing behaviour of pure bitumen using Dynamic Shear Rheometer[J]. Fuel, 2011, 90(8): 2710-2720.
    [32] GASKIN J. On bitumen microstructure and the effects of crack healing[D]. Nottingham: The University of Nottingham, 2013.
    [33] LYU Quan, HUANG Wei-dong, XIAO Fei-peng. Laboratory evaluation of self-healing properties of various modified asphalt[J]. Construction and Building Materials, 2017, 136: 192-201.
    [34] TAN Yi-qiu, SHAN Li-yan, RICHARD KIM Y, et al. Healing characteristics of asphalt binder[J]. Construction and Building Materials, 2012, 27(1): 570-577.
    [35] SU Jun-feng, SCHLANGEN E, WANG Ying-yuan. Investigation the self-healing mechanism of aged bitumen using microcapsules containing rejuvenator[J]. Construction and Building Materials, 2015, 85: 49-56.
    [36] KARLSSON R, ISACSSON U. Laboratory studies of diffusion in bitumen using markers[J]. Journal of Materials Science, 2003, 38(13): 2835-2844.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  147
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回