留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乳化沥青残留物疲劳特性评价的影响因素与机理分析

汪德才 董是 胡磊 郝培文 张庆 陈渊召

汪德才, 董是, 胡磊, 郝培文, 张庆, 陈渊召. 乳化沥青残留物疲劳特性评价的影响因素与机理分析[J]. 交通运输工程学报, 2023, 23(2): 103-115. doi: 10.19818/j.cnki.1671-1637.2023.02.007
引用本文: 汪德才, 董是, 胡磊, 郝培文, 张庆, 陈渊召. 乳化沥青残留物疲劳特性评价的影响因素与机理分析[J]. 交通运输工程学报, 2023, 23(2): 103-115. doi: 10.19818/j.cnki.1671-1637.2023.02.007
WANG De-cai, DONG Shi, HU Lei, HAO Pei-wen, ZHANG Qing, CHEN Yuan-zhao. Influencing factors and mechanism analysis for evaluation of fatigue characteristics of emulsified asphalt residues[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 103-115. doi: 10.19818/j.cnki.1671-1637.2023.02.007
Citation: WANG De-cai, DONG Shi, HU Lei, HAO Pei-wen, ZHANG Qing, CHEN Yuan-zhao. Influencing factors and mechanism analysis for evaluation of fatigue characteristics of emulsified asphalt residues[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 103-115. doi: 10.19818/j.cnki.1671-1637.2023.02.007

乳化沥青残留物疲劳特性评价的影响因素与机理分析

doi: 10.19818/j.cnki.1671-1637.2023.02.007
基金项目: 

国家重点研发计划 2018YFE0120200

华北水利水电大学高层次人才科研项目 202009005

详细信息
    作者简介:

    汪德才(1983-),男,湖南益阳人,华北水利水电大学高级工程师,工学博士,从事路面结构与材料研究

  • 中图分类号: U414

Influencing factors and mechanism analysis for evaluation of fatigue characteristics of emulsified asphalt residues

Funds: 

National Key Research and Development Program of China 2018YFE0120200

High-Level Talent Research Project of North China University of Water Resources and Electric Power 202009005

More Information
  • 摘要: 基于简化黏弹性连续介质损伤(S-VECD)理论研究了乳化沥青残留物应力应变响应特征、疲劳损伤特性与疲劳寿命预估,通过傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)和原子力显微镜(AFM)等微观手段分析了乳化沥青残留物相态结构、共混改性以及疲劳损伤的影响机理。研究结果表明:普通乳化沥青残留物的损伤曲线存在交错现象,添加改性剂使得损伤曲线不再产生交错,提升了乳化沥青残留物的疲劳性能,SBR改性剂的改善效果更为显著;改性乳化沥青残留物在EN、ASTM蒸发方式下的损伤曲线较DHM蒸发方式下更平缓,表现出EN、ASTM蒸发方式下的残留物抵抗损伤能力更强;从疲劳寿命提升幅度上看,不同蒸发方式制备的普通乳化沥青残留物的最大疲劳寿命较最小疲劳寿命提升56.9%,而SBS、SBR改性乳化沥青残留物分别提升179.1%和67.8%,表明蒸发方式对改性乳化沥青残留物的巨大影响,且DHM蒸发方式下改性乳化沥青残留物的疲劳寿命均最小;添加改性剂和改变蒸发方式会引起官能团含量、胶体结构和微观粗糙度的变化;DHM蒸发方式更易使得改性乳化沥青残留物发生氧化作用,并且促使更多的沥青质的产生,使得胶团的胶溶性降低,凝胶化增强,导致乳化沥青残留物的疲劳性能降低,影响疲劳性能的评估结果;原子力显微镜试验表明通过DHM蒸发方法制备的改性乳化沥青残留物,分子结构中O2-和H+发生了交换缩合反应,可能产生了化学胶结结构,进而影响了乳化沥青残留物疲劳性能的准确表征与评价。

     

  • 图  1  乳化沥青制备过程

    Figure  1.  Preparation of emulsified asphalt

    图  2  线性振幅扫描试验

    Figure  2.  Linear amplitude sweep test

    图  3  扫描电子显微镜

    Figure  3.  Scanning electron microscope

    图  4  原子力显微镜

    Figure  4.  Atomic force microscope

    图  5  应力应变曲线

    Figure  5.  Stress-strain curves

    图  6  损伤特性曲线

    Figure  6.  Damage characteristic curves

    图  7  乳化沥青残留物疲劳寿命

    Figure  7.  Fatigue lives of emulsified asphalt residues

    图  8  乳化沥青残留物红外光谱

    Figure  8.  Infrared spectrums of emulsified asphalt residues

    图  9  乳化沥青残留物扫描电子显微镜图像

    Figure  9.  SEM images of emulsified asphalt residues

    图  10  蒸发残留物原子力显微镜图像

    Figure  10.  AFM images of evaporation residues

    表  1  基质沥青技术指标

    Table  1.   Technical indexes of matrix asphalt

    技术指标 测试值 测试方法
    25 ℃针入度/0.1 mm 72 沥青针入度试验
    (T 0604—2011)
    15 ℃延度/cm >150 沥青延度试验
    (T 0605—2011)
    软化点/℃ 48.8 沥青软化点试验(环球法)
    (T 0606—2011)
    135 ℃布氏旋转黏度/(Pa·s) 0.65 沥青旋转黏度试验(布洛克菲尔德黏度计法)(T 0625—2011)
    RTFO测试
    (163 ℃,85 min)
    后残留物
    质量变化/% -0.2 沥青薄膜加热试验
    (T 0609—2011)
    针入度比/% 74 沥青针入度试验
    (T 0604—2011)
    15 ℃延度/cm 25 沥青延度试验
    (T 0605—2011)
    下载: 导出CSV

    表  2  乳化剂技术指标

    Table  2.   Technical indexes of emulsifier

    技术指标 测试值
    外观 棕色黏稠液体,易溶于水
    固含量/% 72.9%
    总胺量/(mmol·g-1) 5.7
    pH值 9~11
    下载: 导出CSV

    表  3  改性剂技术指标

    Table  3.   Technical indexes of modifiers

    类型 固含量/% pH值 密度/(g·cm-3) 机械稳定性/%
    SBS胶乳 45 5~7 0.97 ≤1.0
    SBR胶乳 65 5~7 0.99 ≤1.0
    下载: 导出CSV

    表  4  乳化沥青残留物测试指标

    Table  4.   Test indexes of emulsified asphalt residues

    类型 针入度/0.1 mm 软化点/℃ 15 ℃延度/cm
    70# 72.0 48.8 >150.0
    普通70#(ASTM蒸发方式) 45.3 54.6 29.4
    普通70#(EN蒸发方式) 52.9 54.5 44.0
    普通70#(DHM蒸发方式) 57.3 51.4 81.9
    70#+SBS(ASTM蒸发方式) 41.5 57.3 41.6
    70#+SBS(EN蒸发方式) 47.4 56.1 58.4
    70#+SBS(DHM蒸发方式) 69.0 54.4 95.5
    70#+SBR(ASTM蒸发方式) 44.4 63.3 >150.0
    70#+SBR(EN蒸发方式) 45.6 60.8 >150.0
    70#+SBR(DHM蒸发方式) 59.7 63.5 >150.0
    下载: 导出CSV

    表  5  疲劳参数拟合值

    Table  5.   Fitting value of fatigue parameters

    拟合值 70# 普通70# 70#+SBS 70#+SBR
    DHM蒸发方式 EN蒸发方式 ASTM蒸发方式 DHM蒸发方式 EN蒸发方式 ASTM蒸发方式 DHM蒸发方式 EN蒸发方式 ASTM蒸发方式
    C1/10-6 22.70 7.94 352.00 2 340.00 44.30 58.30 8.25 1 380.00 211.00 427.40
    C2 0.50 0.55 0.37 0.28 0.47 0.44 0.53 0.31 0.38 0.35
    绝对系数 0.99 0.99 0.93 0.96 0.99 0.99 0.99 0.97 0.99 0.98
    下载: 导出CSV

    表  6  乳化沥青残留物特征官能团指数

    Table  6.   Characteristic functional group indexes of emulsified asphalt residues

    特征官能团 普通70# 70#+SBS 70#+SBR
    DHM蒸发方式 EN蒸发方式 ASTM蒸发方式 DHM蒸发方式 EN蒸发方式 ASTM蒸发方式 DHM蒸发方式 EN蒸发方式 ASTM蒸发方式
    C=O 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.003 0.003
    Ar 0.137 0.140 0.142 0.129 0.159 0.164 0.134 0.144 0.148
    S=O 0.124 0.121 0.115 0.110 0.072 0.068 0.203 0.107 0.058
    下载: 导出CSV
  • [1] ILIAS M, ADAMS J, CASTORENA C, et al. Performance-related specifications for asphalt emulsions used in microsurfacing treatments[J]. Transportation Research Record, 2017, 2632(1): 1-13. doi: 10.3141/2632-01
    [2] SHENG Xiao-hui, WANG Mo, XU Tao, et al. Preparation, properties and modification mechanism of polyurethane modified emulsified asphalt[J]. Construction and Building Materials, 2018, 189: 375-383. doi: 10.1016/j.conbuildmat.2018.08.177
    [3] XIAO Jing-jing, JIANG Wei, YE Wan-li, et al. Effect of cement and emulsified asphalt contents on the performance of cement-emulsified asphalt mixture[J]. Construction and Building Materials, 2019, 220: 577-586. doi: 10.1016/j.conbuildmat.2019.06.051
    [4] 张久鹏, 朱红斌, 裴建中, 等. 基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价[J]. 交通运输工程学报, 2015, 15(5): 1-7. doi: 10.19818/j.cnki.1671-1637.2015.05.001

    ZHANG Jiu-peng, ZHU Hong-bin, PEI Jian-zhong, et al. Evaluation of asphalt demulsification and viscosity of modified asphalt emulsion mortar based on Gompertz model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 1-7. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.05.001
    [5] 李东盛. 乳化沥青流变特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI Dong-sheng. Rheological properties of asphalt emulsion[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [6] 邓交龙. 乳化沥青冷再生混合料界面强度机理研究[D]. 南京: 东南大学, 2019.

    DENG Jiao-long. Research on interface strength mechanism of emulsified asphalt cold reclaimed mixture[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [7] ZHANG Qin-qin, FAN Wei-yu, WANG Tie-zhu, et al. Influence of emulsification on the properties of styrene- butadiene-styrene chemically modified bitumens[J]. Construction and Building Materials, 2012, 29: 97-101. doi: 10.1016/j.conbuildmat.2011.09.005
    [8] ABEDINI M, HASSANI A, KAYMANESH M R, et al. The rheological properties of a bitumen emulsion modified with two types of SBR latex[J]. Petroleum Science and Technology, 2016, 34(17/18): 1589-1594.
    [9] HANZ A J, AREGA Z A, BAHIA H U. Rheological behavior of emulsion residues produced by evaporative recovery method[J]. Transportation Research Record, 2010, 2179(1): 102-108. doi: 10.3141/2179-12
    [10] FARRAR M J, SALMANS S T, PLANCHE J P. Recovery and laboratory testing of asphalt emulsion residue: application of the simple aging test (SAT) and 4 mm DSR[J]. Transportation Research Record, 2013, 2370(1): 69-75. doi: 10.3141/2370-09
    [11] MOTAMED A, SALOMON D, SAKIB N, et al. Emulsified asphalt residue recovery and characterization: a combined use of moisture analyzer balance and dynamic shear rheometer[J]. Transportation Research Record, 2014, 2444(1): 88-96. doi: 10.3141/2444-10
    [12] MARASTEANU M O, CLYNE T R. Rheological characterization of asphalt emulsions residues[J]. Journal of Materials in Civil Engineering, 2006, 18(3): 398-407. doi: 10.1061/(ASCE)0899-1561(2006)18:3(398)
    [13] MALLADI H, ASNAKE M, LACROIX A, et al. Low- temperature vacuum drying procedure for rapid asphalt emulsion residue recovery[J]. Transportation Research Record, 2018, 2672(28): 256-265. doi: 10.1177/0361198118791913
    [14] 汪德才, 郝培文, 乐金朝, 等. 冷再生用乳化沥青残留物的流变特性[J]. 材料导报, 2020, 34(3): 06081-06087.

    WANG De-cai, HAO Pei-wen, YUE Jin-chao, et al. Rheological properties of emulsified asphalt residue for cold regeneration[J]. Materials Reports, 2020, 34(3): 06081-06087. (in Chinese)
    [15] SUN Yang, YUE Jin-chao, WANG Ri-ran, et al. Investigation of the effects of evaporation methods on the high-temperature rheological and fatigue performances of emulsified asphalt residues[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12.
    [16] ABEDINI M, HASSANI A I, KAYMANESH M R, et al. Multiple stress creep and recovery behavior of SBR-modified bitumen emulsions[J]. Journal of Testing and Evaluation, 2020, 48(4): 3116-3124.
    [17] CHEN Xiao-yang, CHENG Guo-hong, XU Wen. Influence of evaporation temperature on the rheological properties of modified emulsified asphaltic residues[J]. Journal of Nanoparticle Research, 2020, 22(8): 49-52.
    [18] 王淋, 郭乃胜, 温彦凯, 等. 改性沥青疲劳破坏判定指标适用性[J]. 交通运输工程学报, 2020, 20(4): 91-106. doi: 10.19818/j.cnki.1671-1637.2020.04.007

    WANG Lin, GUO Nai-sheng, WEN Yan-kai, et al. Applicability of determination indexes for fatigue failure of modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 91-106. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.007
    [19] WANG Chao, ZHANG Han, CASTORENA C, et al. Identifying fatigue failure in asphalt binder time sweep tests[J]. Construction and Building Materials, 2016, 121: 535-546. doi: 10.1016/j.conbuildmat.2016.06.020
    [20] 白琦峰, 钱振东, 赵延庆. 基于流变学的沥青抗疲劳性能评价方法[J]. 北京工业大学学报, 2012, 38(10): 1536-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201210017.htm

    BAI Qi-feng, QIAN Zhen-dong, ZHAO Yan-qing. Asphalt fatigue resistance evaluation method based on the rheology[J]. Journal of Beijing University of Technology, 2012, 38(10): 1536-1542. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201210017.htm
    [21] 孙大权, 林添坂, 曹林辉. 基于动态剪切流变试验的沥青疲劳寿命分析方法[J]. 建筑材料学报, 2015, 18(2): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201502031.htm

    SUN Da-quan, LIN Tian-ban, CAO Lin-hui. Evaluation method for fatigue life of asphalt based on dynamic shear rheometer test[J]. Journal of Building Materials, 2015, 18(2): 346-350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201502031.htm
    [22] HASAN M A, HASAN M M, BAIRGI B K, et al. Utilizing simplified viscoelastic continuum damage model to characterize the fatigue behavior of styrene-butadiene-styrene (SBS) modified binders[J]. Construction and Building Materials, 2019, 200: 159-169. doi: 10.1016/j.conbuildmat.2018.12.048
    [23] UNDERWOOD B S, BAEK C, KIM Y R. Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis[J]. Transportation Research Record, 2012(2296): 36-45.
    [24] HINTZ C, VELASQUEZ R, JOHNSON C, et al. Modification and validation of linear amplitude sweep test for binder fatigue specification[J]. Transportation Research Record, 2011(2207): 99-106.
    [25] 谭忆秋, 郭猛, 曹丽萍. 常用改性剂对沥青粘弹特性的影响[J]. 中国公路学报, 2013, 26(4): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304001.htm

    TAN Yi-qiu, GUO Meng, CAO Li-ping. Effects of common modifiers on viscoelastic properties of asphalt[J]. China Journal of Highway and Transport, 2013, 26(4): 7-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304001.htm
    [26] NOTANI M A, NEJAD F M, KHODAⅡ A, et al. Evaluating fatigue resistance of toner- modified asphalt binders using the linear amplitude sweep test[J]. Road Materials and Pavement Design, 2019, 20(8): 1927-1940.
    [27] 张含宇, 徐刚, 陈先华, 等. 不同试验方法的老化沥青疲劳性能研究[J]. 建筑材料学报, 2020, 23(1): 168-175.

    ZHANG Han-yu, XU Gang, CHEN Xian-hua, et al. Fatigue property of aged asphalt binders using different experimental methods[J]. Journal of Building Materials, 2020, 23(1): 168-175. (in Chinese)
    [28] 张倩, 孙好好, 温志广, 等. 基于宏观性能与微观性状确定SBR胶乳在SBR改性乳化沥青中的最佳添加量[J]. 材料科学与工程学报, 2018, 36(2): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201802027.htm

    ZHANG Qian, SUN Hao-hao, WEN Zhi-guang, et al. Determination of optimum SBR latex content in SBR modified asphalt emulsion based on macro and micro characters[J]. Journal of Materials Science and Engineering, 2018, 36(2): 305-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201802027.htm
    [29] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083- 9096.

    LIANG Bo, LAN Fang, ZHENG Jian-long. Research and development of relationship between aging mechanism and fatigue properties of asphalt[J]. Materials Reports, 2021, 35(9): 9083-9096.
    [30] 罗正斌. 沥青用SBS胶乳的制备及其在微表处中的应用[D]. 西安: 长安大学, 2019.

    LUO Zheng-bin. Preparation of SBS latex for asphalt and its application in micro-surfacing[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [31] 王勇, 侯芸, 张艳红. SBS改性与SBR改性微表处体系差异及机理研究[J]. 武汉理工大学学报, 2021, 43(6): 28-33, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202106005.htm

    WANG Yong, HOU Yun, ZHANG Yan-hong. Study on system difference and mechanism of SBS modification and SBR modification micro-surfacing[J]. Journal of Wuhan University of Technology, 2021, 43(6): 28-33, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202106005.htm
    [32] ZHANG Ji, WANG Jun-long, WU Yi-qian. et al. Preparation and properties of organic palygorskite SBR/organic palygorskite compound and asphalt modified with the compound[J]. Construction and Building Materials, 2008, 22(8): 1820-1830.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  174
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回