留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后生产阶段时-温耦合作用对RHAM水稳定性的影响

高杰 姚玉权 王迪 何亮 刘状壮 仰建岗 赵龙

高杰, 姚玉权, 王迪, 何亮, 刘状壮, 仰建岗, 赵龙. 后生产阶段时-温耦合作用对RHAM水稳定性的影响[J]. 交通运输工程学报, 2023, 23(2): 126-140. doi: 10.19818/j.cnki.1671-1637.2023.02.009
引用本文: 高杰, 姚玉权, 王迪, 何亮, 刘状壮, 仰建岗, 赵龙. 后生产阶段时-温耦合作用对RHAM水稳定性的影响[J]. 交通运输工程学报, 2023, 23(2): 126-140. doi: 10.19818/j.cnki.1671-1637.2023.02.009
GAO Jie, YAO Yu-quan, WANG Di, HE Liang, LIU Zhuang-zhuang, YANG Jian-gang, ZHAO Long. Effect of time-temperature coupling on moisture stability of RHAM in post-production stage[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 126-140. doi: 10.19818/j.cnki.1671-1637.2023.02.009
Citation: GAO Jie, YAO Yu-quan, WANG Di, HE Liang, LIU Zhuang-zhuang, YANG Jian-gang, ZHAO Long. Effect of time-temperature coupling on moisture stability of RHAM in post-production stage[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 126-140. doi: 10.19818/j.cnki.1671-1637.2023.02.009

后生产阶段时-温耦合作用对RHAM水稳定性的影响

doi: 10.19818/j.cnki.1671-1637.2023.02.009
基金项目: 

国家自然科学基金项目 52268068

国家自然科学基金项目 52278440

国家自然科学基金项目 52111530134

江西省自然科学基金项目 20202BABL214046

重庆市自然科学基金项目 cstc2020jcyj-msxmX0431

详细信息
    作者简介:

    高杰(1989-),男,陕西汉中人,华东交通大学讲师,工学博士,从事环境友好型沥青路面理论研究

    通讯作者:

    仰建岗(1979-),男,江西南昌人,华东交通大学副教授,工学博士

  • 中图分类号: U416.26

Effect of time-temperature coupling on moisture stability of RHAM in post-production stage

Funds: 

National Natural Science Foundation of China 52268068

National Natural Science Foundation of China 52278440

National Natural Science Foundation of China 52111530134

Natural Science Foundation of Jiangxi Province 20202BABL214046

Natural Science Foundation of Chongqing cstc2020jcyj-msxmX0431

More Information
  • 摘要: 为揭示热再生沥青混合料(RHAM)在后生产阶段新旧沥青混融程度演变及其对RHAM水稳定性的作用,在调研后生产阶段中RHAM的温度耗散规律与耗时的基础上,以时-温当量为指标构建了4种典型后生产阶段工况,采用Pb标记新加沥青,借助能谱仪分析了时-温当量对新旧沥青融合的促进作用;通过沥青混合料水敏感性试验模拟了轮胎运行作用下雨水对再生沥青路面的冲刷效应,解析了时-温当量与RHAM在动水冲刷条件下水稳定性的定量关系;对比了5个厂拌热再生沥青路面工程中7种RHAM在后生产阶段前后的强度差异,并论证了时-温当量对再生沥青路面压实度的影响。研究结果表明:后生产阶段中新旧沥青的融合程度与时-温当量呈正比关系;提高时-温当量可抑制动水冲刷下RHAM的空隙发育,从而改善其水稳定性;时-温当量每提高10%,RHAM在未冲刷和弱、中、强冲刷下的马歇尔稳定度分别增大了0.86%、2.94%、2.13%和3.34%,冻融前后的劈裂强度分别提高了1.24%和0.21%;RHAM经历后生产阶段后的稳定度均较之前有显著提高,增幅介于9.0%~32.4%;在保证压实温度和规范施工的前提下,时-温当量与压实质量之间没有必然联系,考虑到时-温当量对RHAM的性能改善作用,建议在保证压实温度的前提下设法延长后生产阶段。

     

  • 图  1  RHAM后生产阶段耗时

    Figure  1.  Time consumptions of RHAM in post-production stage

    图  2  后生产阶段各环节关键节点的典型红外热像结果

    Figure  2.  Typical infrared thermal image results of key nodes in each link in post-production stage

    图  3  后生产阶段中RHAM温度下降规律

    Figure  3.  Decreasing laws of RHAM temperature in post-production stage

    图  4  AC-20型40%RAP掺量的RHAM级配曲线

    Figure  4.  Gradation curves of AC-20 RHAM with 40% RAP content

    图  5  RHAM拌和工艺

    Figure  5.  RHAM mixing process

    图  6  新旧沥青融合程度评价方法

    Figure  6.  Evaluation methods for diffusion degree of new and old asphalt

    图  7  沥青混合料水敏感性测试仪

    Figure  7.  MIST tester for asphalt mixture

    图  8  试验段沥青路面压实度测试方案

    Figure  8.  Test scheme for compactness of asphalt pavement in test section

    图  9  不同工况下RAP矿料表面沥青胶浆的代表性形貌及Pb分布特征

    Figure  9.  Representative morphologies and Pb distributions of asphalt mortar on RAP aggregate surface under different working conditions

    图  10  不同工况下新旧沥青的融合程度

    Figure  10.  Diffusion degrees of new and old asphalt under different working conditions

    图  11  RHAM经MIST后的空隙率

    Figure  11.  Void rates of RHAM after MIST

    图  12  RHAM经MIST后的马歇尔稳定度

    Figure  12.  Marshall stabilities of RHAM after MIST

    图  13  RHAM的冻融劈裂强度

    Figure  13.  Freeze-thaw splitting strengths of RHAM

    图  14  实体工程中RHAM在后生产阶段前、后的马歇尔稳定度

    Figure  14.  Marshall stabilities of RHAM before and after post-production stage in physical engineering

    图  15  四种工况下RHAM路面试验段的压实度

    Figure  15.  Compactnesses of test pavement section of RHAM under four working conditions

    图  16  四种工况下再生沥青路面的压实度特征

    Figure  16.  Compactness characteristics of recycled asphalt pavement under four working conditions

    表  1  后生产阶段中RHAM的温度代表值和耗时

    Table  1.   Temperature representative values and time consumptions of RHAM in post-production stage

    后生产阶段 工况
    1# 2# 3# 4#
    短期存储环节 温度代表值/℃ 178
    耗时/min 40
    运输环节 温度代表值/℃ 177 174 172 169
    耗时/min 30 60 90 120
    现场等待环节 温度代表值/℃ 168 162 157 151
    耗时/min 30 60 60 90
    摊铺与碾压环节 温度代表值/℃ 135 129 123 118
    耗时/min 30
    时-温当量/(℃·min) 21 520 31 150 35 710 44 530
    下载: 导出CSV

    表  2  RAP矿料级配与沥青含量试验结果

    Table  2.   Test results of RAP aggregate gradation and asphalt content

    矿料规格/
    mm
    不同筛孔尺寸(mm)的通过率/% 沥青含量/
    %
    13.200 9.500 4.750 2.360 1.180 0.600 0.300 0.150 0.075
    0~8 100.0 100.0 99.3 86.4 67.3 47.3 31.9 25.2 18.3 5.42
    8~13 100.0 97.0 50.6 25.8 19.1 14.4 10.5 8.6 6.4 2.65
    下载: 导出CSV

    表  3  RAP技术指标

    Table  3.   Technical indexes of RAP

    材料类型 试验项目 试验结果
    RAP中的沥青 25 ℃针入度/0.1 mm 23
    软化点/℃ 62.1
    15 ℃延度/cm 19.2
    60 ℃动力黏度/(Pa·s) 2 980
    RAP中的粗集料 压碎值/% 10.2
    针片状含量/% 13.4
    表观相对密度 2.701
    RAP中的细集料 表观相对密度 2.686
    下载: 导出CSV

    表  4  石灰岩集料技术指标

    Table  4.   Technical indexes of limestone aggregate

    试验项目 技术要求 试验结果
    矿粉 0~5 5~10 10~20
    压碎值/% ≤28 14.3
    针片状含量/% ≤15(粒径大于9.5 mm) 17.3 12.1
    ≤20(粒径大于9.5 mm)
    表观相对密度 ≥2.5 2.723 2.774 2.891 2.758
    吸水率/% ≤3.0 1.26 0.48
    黏附性 ≥4 5 5
    砂当量/% ≥60 74.3
    下载: 导出CSV

    表  5  SBS改性沥青技术指标

    Table  5.   Technical indexes of SBS modified asphalt

    试验项目 技术要求 试验结果
    25 ℃针入度/0.1 mm 40~60 47.4
    软化点/℃ ≥60 78.2
    5 ℃延度/cm ≥20 31
    135 ℃动力黏度/(Pa·s) ≤3.0 2.357
    下载: 导出CSV

    表  6  MIST参数

    Table  6.   Parameters of MIST

    试验方案 水温/℃ 冲刷次数 动水压强/kPa 冲刷强度
    1 40 1 000 176
    2 50 2 000 276
    3 60 3 000 376
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001

    Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.001
    [2] JTTE Editorial Office, CHEN Jia-qi, DAN Han-cheng, et al. New innovations in pavement materials and engineering: a review on pavement engineering research 2021[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6): 815-999. doi: 10.1016/j.jtte.2021.10.001
    [3] SHA Ai-min, LIU Zhuang-zhuang, JIANG Wei, et al. Advances and development trends in eco-friendly pavements[J]. Journal of Road Engineering, 2021, 1: 1-42. doi: 10.1016/j.jreng.2021.12.002
    [4] YOU Ling-yun, LONG Zheng-wu, YOU Zhan-ping, et al. Review of recycling waste plastics in asphalt paving materials[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(5): 742-764. doi: 10.1016/j.jtte.2022.07.002
    [5] BASTIDAS-MARTÍNEZ J G, REYES-LIZCANO F A, RONDÓN-QUINTANA H A. Use of recycled concrete aggregates in asphalt mixtures for pavements: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(5): 725-741. doi: 10.1016/j.jtte.2022.08.001
    [6] 何兆益, 陈龙, 陈先勇, 等. 厂拌热再生沥青混合料力学性能及应用研究[J]. 建筑材料学报, 2016, 19(5): 871-875, 914. doi: 10.3969/j.issn.1007-9629.2016.05.015

    HE Zhao-yi, CHEN Long, CHEN Xian-yong, et al. Mechanical properties and application research of hot recycled asphalt mixture from central mixing plant[J]. Journal of Building Materials, 2016, 19(5): 871-875, 914. (in Chinese) doi: 10.3969/j.issn.1007-9629.2016.05.015
    [7] 陈龙, 朱建勇, 何兆益, 等. 厂拌热再生沥青混合料低温抗裂与水稳定性研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(4): 39-45, 76.

    CHEN Long, ZHU Jian-yong, HE Zhao-yi, et al. Low temperature anti-cracking performance and water stability of hot recycled asphalt mixture from central plant mixing[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(4): 39-45, 76. (in Chinese)
    [8] OREŠKOVI AC'G M, MENEGUSSO PIRES G, BRESSI S, et al. Quantitative assessment of the parameters linked to the blending between reclaimed asphalt binder and recycling agent: a literature review[J]. Construction and Building Materials, 2020, 234: 117323. doi: 10.1016/j.conbuildmat.2019.117323
    [9] 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    GUO Meng. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [10] HE Liang, LI Guan-nan, LYU Song-tao, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119225. doi: 10.1016/j.conbuildmat.2020.119225
    [11] SREERAM A, LENG Zhen. Variability of RAP binder mobilisation in hot mix asphalt mixtures[J]. Construction and Building Materials, 2019, 201: 502-509. doi: 10.1016/j.conbuildmat.2018.12.212
    [12] DING Yong-jie, CAO Xue-juan, GONG Hong-ren, et al. Evaluating recycling efficiency of plant-asphalt mixtures containing RAP/RAS[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020316. doi: 10.1061/(ASCE)MT.1943-5533.0003373
    [13] SREERAM A, LENG Zhen, ZHANG Yuan, et al. Evaluation of RAP binder mobilisation and blending efficiency in bituminous mixtures: an approach using ATR-FTIR and artificial aggregate[J]. Construction and Building Materials, 2018, 179: 245-253. doi: 10.1016/j.conbuildmat.2018.05.154
    [14] KARLSSON R, ISACSSON U. Material-related aspects of asphalt recycling—state-of-the-art[J]. Journal of Materials in Civil Engineering, 2006, 18(1): 81-92. doi: 10.1061/(ASCE)0899-1561(2006)18:1(81)
    [15] DING Yong-jie, HUANG Bao-shan, XIANG Shu, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. doi: 10.1016/j.fuel.2016.02.022
    [16] 陈龙, 何兆益, 陈宏斌, 等. 新-旧沥青界面再生流变特征及分子动力学模拟研究[J]. 中国公路学报, 2019, 32(3): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903004.htm

    CHEN Long, HE Zhao-yi, CHEN Hong-bin, et al. Rheological characteristics and molecular dynamics simulation of interface regeneration between virgin and aged asphalts[J]. China Journal of Highway and Transport, 2019, 32(3): 25-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903004.htm
    [17] 郭德栋, 张圣涛, 李晋, 等. 厂拌热再生过程中旧矿料颗粒的迁移行为[J]. 山东大学学报(工学版), 2018, 48(2): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201802007.htm

    GUO De-dong, ZHANG Sheng-tao, LI Jin, et al. Migration behavior of reclaimed mineral aggregate in process of central plant hot recycling[J]. Journal of Shandong University(Engineering Science), 2018, 48(2): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201802007.htm
    [18] BASUENY A, PERRATON D, CARTER A. Laboratory study of the effect of RAP conditioning on the mechanical properties of hot mix asphalt containing RAP[J]. Materials and Structures, 2014, 47(9): 1425-1450. doi: 10.1617/s11527-013-0127-0
    [19] LIU Yang, WANG Hai-nian, TIGHE S L, et al. Effects of preheating conditions on performance and workability of hot in-place recycled asphalt mixtures[J]. Construction and Building Materials, 2019, 226: 288-298. doi: 10.1016/j.conbuildmat.2019.07.277
    [20] YU Bin, GU Xing-yu, WU Ming, et al. Application of a high percentage of reclaimed asphalt pavement in an asphalt mixture: blending process and performance investigation[J]. Road Materials and Pavement Design, 2017, 18(3): 753-765. doi: 10.1080/14680629.2016.1182941
    [21] PIRZADEH P, KADHIM H, GRANT D L, et al. Impact of hot mix asphalt plant silo storage conditions on blending and diffusion between virgin and RAP binders[J]. Road Materials and Pavement Design, 2021, 22(6): 1231-1253. doi: 10.1080/14680629.2019.1684346
    [22] LI Ming-chen, LIU Li-ping, XING Cheng-wei, et al. Influence of rejuvenator preheating temperature and recycled mixture's curing time on performance of hot recycled mixtures[J]. Construction and Building Materials, 2021, 295: 123616.
    [23] 郭鹏, 谢凤章, 孟建玮, 等. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108. doi: 10.11896/cldb.19070255

    GUO Peng, XIE Feng-zhang, MENG Jian-wei, et al. Review on the interface blending behavior of virgin asphalt and aged asphalt during asphalt reclaiming[J]. Materials Reports, 2020, 34(13): 13100-13108. (in Chinese) doi: 10.11896/cldb.19070255
    [24] 赵占立. 基于示踪法再生混合料中新旧沥青微观混合状态的研究[D]. 广州: 华南理工大学, 2016.

    ZHAO Zhan-li. Study on micro state of blending of aged and virgin asphalt in recycling asphalt mixture based on trace method[D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
    [25] GUO Meng, MOTAMED A, TAN Yi-qiu, et al. Investigating the interaction between asphalt binder and fresh and simulated RAP aggregate[J]. Materials and Design, 2016, 105: 25-33. doi: 10.1016/j.matdes.2016.04.102
    [26] MA Tao, HUANG Xiao-ming, ZHAO Yong-li, et al. Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling[J]. Construction and Building Materials, 2015, 98: 530-536. doi: 10.1016/j.conbuildmat.2015.08.135
    [27] KRIZ P, GRANT D L, VELOZA B A, et al. Blending and diffusion of reclaimed asphalt pavement and virgin asphalt binders[J]. Road Materials and Pavement Design, 2014, 15(S1): 78-112.
    [28] GUO Meng, LIU Hai-qing, JIAO Yu-bo, et al. Effect of WMA-RAP technology on pavement performance of asphalt mixture: a state-of-the-art review[J]. Journal of Cleaner Production, 2020, 266: 121704.
    [29] YANG Chao, ZHANG Jian-wei, YANG Fei, et al. Multi-scale performance evaluation and correlation analysis of blended asphalt and recycled asphalt mixtures incorporating high RAP content[J]. Journal of Cleaner Production, 2021, 317: 128278.
    [30] MA Xiang, LENG Zhen, WANG Li-li, et al. Effect of reclaimed asphalt pavement heating temperature on the compactability of recycled hot mix asphalt[J]. Materials, 2020, 13(16): 3621.
    [31] YAO Yu-quan, YANG Jian-gang, GAO Jie, et al. Strategy for improving the effect of hot in-place recycling of asphalt pavement[J]. Construction and Building Materials, 2023, 366: 130054.
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  173
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回