留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子化学的沥青热老化与紫外老化机理

胡栋梁 顾兴宇 孙丽君 薄雾 吴成彬

胡栋梁, 顾兴宇, 孙丽君, 薄雾, 吴成彬. 基于量子化学的沥青热老化与紫外老化机理[J]. 交通运输工程学报, 2023, 23(2): 141-152. doi: 10.19818/j.cnki.1671-1637.2023.02.010
引用本文: 胡栋梁, 顾兴宇, 孙丽君, 薄雾, 吴成彬. 基于量子化学的沥青热老化与紫外老化机理[J]. 交通运输工程学报, 2023, 23(2): 141-152. doi: 10.19818/j.cnki.1671-1637.2023.02.010
HU Dong-liang, GU Xing-yu, SUN Li-jun, BO Wu, WU Cheng-bin. Quantum chemistry-based thermal and UV aging mechanism of asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 141-152. doi: 10.19818/j.cnki.1671-1637.2023.02.010
Citation: HU Dong-liang, GU Xing-yu, SUN Li-jun, BO Wu, WU Cheng-bin. Quantum chemistry-based thermal and UV aging mechanism of asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 141-152. doi: 10.19818/j.cnki.1671-1637.2023.02.010

基于量子化学的沥青热老化与紫外老化机理

doi: 10.19818/j.cnki.1671-1637.2023.02.010
基金项目: 

国家自然科学基金项目 52278442

国家自然科学基金项目 51878162

西藏自治区科技计划项目 XZ2019TL-G-01

江苏省交通发展专项资金项目 2020Y19-1

详细信息
    作者简介:

    胡栋梁(1991-),男,湖北仙桃人,东南大学工学博士研究生,从事沥青材料老化机理研究

    顾兴宇(1976-),男,江苏泰兴人,东南大学教授,工学博士

  • 中图分类号: U414

Quantum chemistry-based thermal and UV aging mechanism of asphalt

Funds: 

National Natural Science Foundation of China 52278442

National Natural Science Foundation of China 51878162

Science and Technology Project of Tibet Autonomous Region XZ2019TL-G-01

Special Fund Project for Transportation Development of Jiangsu Province 2020Y19-1

More Information
  • 摘要: 为从原子层面揭示沥青热老化与紫外老化的底层机制,基于从头算分子动力学和密度泛函理论分析了沥青质在多种温度及紫外辐射条件下的老化反应路径与反应势能参数;基于傅里叶变换红外光谱试验,分析了原样沥青、热老化沥青和紫外老化沥青试样表面化学官能团的变化规律,比较了它们的老化程度。研究结果表明:沥青质老化涉及的亚反应包括由氧气或自由基攫氢所触发的环烷芳构化与含氧基团形成,以及直接的侧链均裂;沥青质老化机理可归纳为沥青质在氧气分子或自由基的侵袭下不断失去氢原子并转化为具有高反应性的不稳定结构,因而经由分子异构化或吸附氧原子等后续反应来降低自身能量,由此引发了沥青质老化行为的持续进展;温度提升不仅加快老化反应速率,还使更多类型的老化反应得以发生;芳构化反应的能垒最低,因此,在较低温度下即可发生,含氧基团的形成次之,而侧链均裂反应的能垒最高,只能在较高温度下才发生;在紫外线辐射下,沥青质分子跃迁至激发态,其反应能垒相比基态显著降低,能大幅加快老化反应;傅里叶变换红外光谱测试结果表明紫外老化沥青试样的老化程度远高于热老化沥青试样,验证了理论计算结果。

     

  • 图  1  包含沥青质与O2的AIMD模拟体系

    Figure  1.  AIMD simulation system containing asphaltene and O2

    图  2  采用UVA-340光源对太阳光紫外线区域的模拟

    Figure  2.  Simulation of ultraviolet region of sunlight by UVA-340 light source

    图  3  2 000 K温度下AIMD模拟得到的沥青质老化期间分子结构演变过程

    Figure  3.  Molecular structure evolution process during asphaltene aging from AIMD simulation at 2 000 K

    图  4  2 000 K温度下模拟体系能量随老化时间的演化

    Figure  4.  System energy evolution with aging time in simulation at 2 000 K

    图  5  D分布与P的变化

    Figure  5.  Distribution of D and change of P

    图  6  沥青质老化前后分子间结合能变化

    Figure  6.  Changes in intermolecular binding energy before and after asphaltene aging

    图  7  不同温度下的沥青质老化反应过程

    Figure  7.  Asphaltene aging reaction processes at different temperatures

    图  8  沥青质老化反应体系势能面及潜在老化路径

    Figure  8.  Potential energy surface and potential aging paths of asphaltene aging reaction system

    图  9  沥青质不同位置氧气攫氢及均裂反应的自由能垒

    Figure  9.  Free energy barriers of H-abstraction by O2 and homolysis reactions at different locations in asphaltene

    图  10  基态及激发态下沥青质发生氧气攫氢和均裂反应的自由能垒

    Figure  10.  Free energy barriers of H-abstraction by O2 and homolysis reactions on asphaltenes in ground and excited states

    图  11  基态和激发态下沿沥青质老化路径的自由能面与能垒

    Figure  11.  Free energy surfaces and energy barriers along asphaltene aging paths in ground and excited states

    图  12  原样沥青、热老化沥青及紫外老化沥青的ATR-FTIR谱图

    Figure  12.  ATR-FTIR spectra of virgin, heat-aged and UV-aged asphalts

  • [1] 张恒龙, 徐国庆, 朱崇政, 等. 长期老化对基质沥青与SBS改性沥青化学组成, 形貌及流变性能的影响[J]. 长安大学学报: 自然科学版, 2019, 39(2): 10-18, 56. doi: 10.3969/j.issn.1673-2049.2019.02.003

    ZHANG Heng-long, XU Guo-qing, ZHU Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University: Natural Science Edition, 2019, 39(2): 10-18, 56. (in Chinese) doi: 10.3969/j.issn.1673-2049.2019.02.003
    [2] ZHANG Run-hua, SIAS J, DAVE E, et al. Impact of aging on the viscoelastic properties and cracking behavior of asphalt mixtures[J]. Transportation Research Record, 2019, 2673(6): 406-415. doi: 10.1177/0361198119846473
    [3] 王佳妮, 薛忠军, 谭忆秋. 紫外老化对沥青力学行为及聚集态的影响[J]. 中国公路学报, 2011, 24(1): 14-19. doi: 10.3969/j.issn.1001-7372.2011.01.003

    WANG Jia-ni, XUE Zhong-jun, TAN Yi-qiu. Influence of ultraviolet aging on mechanical behavior and aggregated state of asphalt[J]. China Journal of Highway and Transport, 2011, 24(1): 14-19. (in Chinese) doi: 10.3969/j.issn.1001-7372.2011.01.003
    [4] PETERSEN J C. A review of the fundamentals of asphalt oxidation: chemical, physicochemical, physical property, and durability relationships[R]. Washington DC: Transportation Research Board, 2009.
    [5] 何亮, 黄胡端, VAN DEN BERGH W, 等. 沥青自修复微胶囊研究进展[J]. 材料导报, 2020, 34(15): 15092-15101. doi: 10.11896/cldb.19060096

    HE Liang, HUANG Hu-duan, VAN DEN BERGH W, et al. A state-of-the-art on microcapsules for asphalt self-healing[J]. Materials Reports, 2020, 34(15): 15092-15101. (in Chinese) doi: 10.11896/cldb.19060096
    [6] APOSTOLIDIS P, LIU Xue-yan, KASBERGEN C, et al. Synthesis of asphalt binder aging and the state of the art of antiaging technologies[J]. Transportation Research Record, 2017, 2633(1): 147-153. doi: 10.3141/2633-17
    [7] HU Dong-liang, GU Xing-yu, DONG Qiao, et al. Investigating the bio-rejuvenator effects on aged asphalt through exploring molecular evolution and chemical transformation of asphalt components during oxidative aging and regeneration[J]. Journal of Cleaner Production, 2021, 329: 129711. doi: 10.1016/j.jclepro.2021.129711
    [8] 屈鑫, 丁鹤洋, 汪海年. 道路沥青老化评价方法研究进展[J]. 中国公路学报, 2022, 35(6): 205-220. doi: 10.3969/j.issn.1001-7372.2022.06.018

    QU Xin, DING He-yang, WANG Hai-nian. The state-of-the-art review on evaluation methods of asphalt binder aging[J]. China Journal of Highway and Transport, 2022, 35(6): 205-220. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.06.018
    [9] 郭鹏, 鲁承慧, 谢凤章, 等. 微观尺度下温拌再生混合料新-旧沥青界面融合特性[J]. 中国公路学报, 2021, 34(10): 89-97. doi: 10.3969/j.issn.1001-7372.2021.10.008

    GUO Peng, LU Cheng-hui, XIE Feng-zhang, et al. Study on interfacial fusion characteristics of virgin and aged asphalt of warm mix recycled mixture at micro scale[J]. China Journal of Highway and Transport, 2021, 34(10): 89-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.10.008
    [10] 谭忆秋, 王佳妮, 冯中良, 等. 沥青结合料紫外老化机理[J]. 中国公路学报, 2008, 21(1): 19-24. doi: 10.3321/j.issn:1001-7372.2008.01.004

    TAN Yi-qiu, WANG Jia-ni, FENG Zhong-liang, et al. Ultraviolet aging mechanism of asphalt binder[J]. China Journal of Highway and Transport, 2008, 21(1): 19-24. (in Chinese) doi: 10.3321/j.issn:1001-7372.2008.01.004
    [11] 庞凌. 沥青紫外光老化特性研究[D]. 武汉: 武汉理工大学, 2008.

    PANG Ling. Research on the ultraviolet radiation ageing characteristics of asphalt[D]. Wuhan: Wuhan University of Technology, 2008. (in Chinese)
    [12] HUNG A, FINI E H. Surface morphology and chemical mapping of UV-aged thin films of bitumen[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(31): 11764-11771. doi: 10.1021/acssuschemeng.0c03877
    [13] CHEN Zi-hao, ZHANG Heng-long, DUAN Hai-hui. Investigation of ultraviolet radiation aging gradient in asphalt binder[J]. Construction and Building Materials, 2020, 246: 118501.
    [14] 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. doi: 10.11896/cldb.19070106

    HE Liang, LI Guan-nan, ZHENG Yu-feng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093. (in Chinese) doi: 10.11896/cldb.19070106
    [15] 崔亚楠, 李雪杉, 张淑艳. 基于分子动力学模拟的再生剂-老化沥青扩散机理[J]. 建筑材料学报, 2021, 24(5): 1105-1109. doi: 10.3969/j.issn.1007-9629.2021.05.028

    CUI Ya-nan, LI Xue-shan, ZHANG Shu-yan. Diffusion mechanism of regenerant aged asphalt based on molecular dynamics simulation[J]. Journal of Building Materials, 2021, 24(5): 1105-1109. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.05.028
    [16] HU Dong-liang, GU Xing-yu, CUI Bing-yan, et al. Modeling the oxidative aging kinetics and pathways of asphalt: a ReaxFF molecular dynamics study[J]. Energy and Fuels, 2020, 34(3): 3601-3613. doi: 10.1021/acs.energyfuels.9b03740
    [17] PAN Tong-yan. A first-principles based chemophysical environment for studying lignins as an asphalt antioxidant[J]. Construction and Building Materials, 2012, 36: 654-664. doi: 10.1016/j.conbuildmat.2012.06.012
    [18] HÄSE F, GALVÁN I, ASPURU-GUZIK A, et al. How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry[J]. Chemical Science, 2019, 10(8): 2298-2307. doi: 10.1039/C8SC04516J
    [19] PAHLAVAN F, HUNG A M, ZADSHIR M, et al. Alteration of π-electron distribution to induce deagglomeration in oxidized polar aromatics and asphaltenes in an aged asphalt binder[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(5): 6554-6569. doi: 10.1021/acssuschemeng.8b00364
    [20] LI Tian-shuai, GUO Zhi-xiang, LU Guo-yang, et al. Experimental investigations and quantum chemical calculations of methylene diphenyl diisocyanate (MDI)-based chemically modified bitumen and its crosslinking behaviours[J]. Fuel, 2022, 321: 124084. doi: 10.1016/j.fuel.2022.124084
    [21] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012
    [22] SCHULER B, MEYER G, PEÑA D, et al. Unraveling the molecular structures of asphaltenes by atomic force microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876. doi: 10.1021/jacs.5b04056
    [23] HUTTER J, IANNUZZI M, SCHIFFMANN F, et al. CP2K: atomistic simulations of condensed matter systems[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4(1): 15-25. doi: 10.1002/wcms.1159
    [24] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. doi: 10.1063/1.3382344
    [25] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. doi: 10.1016/0263-7855(96)00018-5
    [26] LIU Ze-yu, LU Tian, CHEN Qin-xue. Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18] carbon: focusing on molecular adsorption and stacking[J]. Carbon, 2020, 171: 514-523.
    [27] LU Tian, CHEN Fei-wu. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885
    [28] LAI Wen-zhen, LI Chun-sen, CHEN Hui, et al. Hydrogen-abstraction reactivity patterns from A to Y: the valence bond way[J]. Angewandte Chemie International Edition, 2012, 51(23): 5556-5578. doi: 10.1002/anie.201108398
    [29] TAN Ting, YANG Xue-liang, KRAUTER C M, et al. Ab initio kinetics of hydrogen abstraction from methyl acetate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals[J]. The Journal of Physical Chemistry A, 2015, 119(24): 6377-6390. doi: 10.1021/acs.jpca.5b03506
    [30] MULLINS O C. The modified Yen model[J]. Energy and Fuels, 2010, 24(4): 2179-2207.
    [31] YUT I, ZOFKA A. Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy of oxidized polymer-modified bitumens[J]. Applied Spectroscopy, 2011, 65(7): 765-770.
  • 加载中
图(12)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  219
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回