留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车隧道车内外压力变化的实车试验

梅元贵 王志钧 吕博 杜云超 杨永刚

梅元贵, 王志钧, 吕博, 杜云超, 杨永刚. 高速列车隧道车内外压力变化的实车试验[J]. 交通运输工程学报, 2023, 23(2): 183-198. doi: 10.19818/j.cnki.1671-1637.2023.02.013
引用本文: 梅元贵, 王志钧, 吕博, 杜云超, 杨永刚. 高速列车隧道车内外压力变化的实车试验[J]. 交通运输工程学报, 2023, 23(2): 183-198. doi: 10.19818/j.cnki.1671-1637.2023.02.013
MEI Yuan-gui, WANG Zhi-jun, LYU Bo, DU Yun-chao, YANG Yong-gang. Full-scale experiment on pressure changes inside and outside high-speed trains in tunnels[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 183-198. doi: 10.19818/j.cnki.1671-1637.2023.02.013
Citation: MEI Yuan-gui, WANG Zhi-jun, LYU Bo, DU Yun-chao, YANG Yong-gang. Full-scale experiment on pressure changes inside and outside high-speed trains in tunnels[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 183-198. doi: 10.19818/j.cnki.1671-1637.2023.02.013

高速列车隧道车内外压力变化的实车试验

doi: 10.19818/j.cnki.1671-1637.2023.02.013
基金项目: 

中国国家铁路集团有限公司科技研究开发计划 N2022J055

详细信息
    作者简介:

    梅元贵(1964-),男,河南荥阳人,兰州交通大学教授,工学博士,从事轨道交通空气动力学及应用研究

  • 中图分类号: U266.2

Full-scale experiment on pressure changes inside and outside high-speed trains in tunnels

Funds: 

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. N2022J055

More Information
  • 摘要: 基于350 km·h-1中国标准动车组在大西高铁科学试验段的实车试验,结合压力保护阀工作状态,研究了列车通过试验段全程的车内外压力变化特征,分析了隧道长度、线路坡度、隧道群和列车速度对车内外压力变化的影响;针对EN 14067-5—2010中实车试验最大压力变化量的估算方法和TB/T 3250—2010中“整车车内可构成一个气压密封舱”的条文进行了实测数据验证,研究了整车气密效率的变化特征以及其与车内压力舒适性的关系。分析结果表明:EN 14067-5—2010中车外压力峰值计算方法得出的结果与实测数据存在较大差异,对其中列车和隧道壁面摩擦导致压力变化进行变量替代修正后的计算与实测差异明显减小;在压力保护阀关闭状态下,列车通过大坡度隧道后车内外长时间保持较大压力差;车厢内端门、风挡通过台门、司机室门的关闭几乎不存在气密性效果,整列车内贯通空间可视为一个气压密封舱;头车端和尾车端进入隧道引起的压力变化以及空气与列车和隧道壁面摩擦引起的压力变化与列车速度的平方成正比;整车气密效率随隧道长度的增大呈减小趋势,且其减小会带来车内人员耳部不适的问题。研究成果可为进一步认识高速列车通过隧道车内外压力变化特征和国内外相关试验标准的进一步完善提供支撑。

     

  • 图  1  试验段高程变化、隧道分布和隧道断面

    Figure  1.  Altitude change, tunnels distribution and tunnel transect of test section

    图  2  压力测点布置和数采系统

    Figure  2.  Pressure measuring points layout and data acquisition system

    图  3  车内外压力测点布置

    Figure  3.  Measuring points layouts inside and outside train

    图  4  列车通过5 456 m隧道3次试验结果比较

    Figure  4.  Comparison of 3 experimental results of train passing through 5 456 m tunnel

    图  5  试验段车内外压力时间历程曲线、线路高程和大气压力变化

    Figure  5.  Pressure change history curves inside and outside train, altitude and atmospheric pressure change of test section

    图  6  不同压力保护阀工作状态车内外压力变化对比

    Figure  6.  Comparison of pressure changes inside and outside train in different pressure protection valves working states

    图  7  列车以290 km·h-1通过长度100 m隧道车外压力-时间曲线与压力波传播轨迹

    Figure  7.  Pressure-time curves outside train and pressure wave propagation trajectories when train passing through 100 m tunnel with 290 km·h-1

    图  8  列车以300 km·h-1通过长度1 506 m隧道车外压力-时间曲线与压力波传播轨迹

    Figure  8.  Pressure-time curves outside train and pressure wave propagation trajectories when train passing through 1 506 m tunnel with 300 km·h-1

    图  9  列车以310 km·h-1通过长度5 456 m隧道车外压力-时间曲线与压力波传播轨迹

    Figure  9.  Pressure-time curves outside train and pressure wave propagation trajectories when train passing through 5 456 m tunnel with 310 km·h-1

    图  10  列车通过隧道不同压力变化

    Figure  10.  Different pressure variations when train passing through tunnel

    图  11  列车通过试验段全程车内外压力-时间曲线

    Figure  11.  Pressure-time curves inside and outside train when train passing through whole test section

    图  12  列车通过不同区段车内不同位置压力变化

    Figure  12.  Pressure variations at different locations inside train when train passing through different test sections

    图  13  列车通过隧道群全程隧道压力波传播轨迹

    Figure  13.  Pressure wave propagation trajectories when train passing through whole tunnel group

    图  14  列车通过隧道群头车、中间车、尾车车内外压力变化时间历程曲线

    Figure  14.  Pressure change history curves of head, middle and tail vehicles when train passing through whole tunnel group

    图  15  隧道群和独立隧道车内外压力变化时间历程曲线比较(列车由2 742 m驶入1 467 m隧道)

    Figure  15.  Comparison between pressure change history curves inside and outside train of tunnel group and independent tunnel (train passing from 2 742 m tunnel to 1 467 m tunnel)

    图  16  隧道群和独立隧道车内外压力变化时间历程曲线比较(列车由1 467 m驶入2 742 m隧道)

    Figure  16.  Comparison between pressure change history curves inside and outside train of tunnel group and independent tunnel (train passing from 1 467 m tunnel to 2 742 m tunnel)

    图  17  Δp2, 1、Δp1, 0、Δp3, 0随速度变化拟合结果

    Figure  17.  Fitting results of Δp2, 1, Δp1, 0, Δp3, 0 changing with speed

    图  18  整车气密效率和车内每3 s最大压力变化比较

    Figure  18.  Comparison between sealing efficiency of whole train and maximum pressure variation in 3 s inside train

    表  1  最大压力峰峰值计算和实测对比

    Table  1.   Comparison between calculation and test pressure peak-peak values

    隧道 1 506 m隧道 3 083 m隧道 5 456 m隧道
    头车 Δpm-c/kPa 2.85 3.27 3.31
    Δpm-t /kPa 2.67 3.13 2.82
    δ/% 6.31 4.28 14.80
    中间车 Δpm-c /kPa 2.40 2.45 2.19
    Δpm-t /kPa 2.59 2.67 2.30
    δ/% 7.34 8.24 4.78
    尾车 Δpm-c /kPa 2.18 2.29 2.11
    Δpm-t /kPa 2.63 2.96 2.57
    δ/% 17.11 22.64 17.90
    下载: 导出CSV

    表  2  最大压力峰峰值计算(修正)和实测对比

    Table  2.   Comparison between calculation (fixed) and test pressure peak-peak values

    隧道 1 506 m隧道 3 083 m隧道 5 456 m隧道
    头车 Δpm-c/kPa 2.72 3.04 2.68
    Δpm-t/kPa 2.67 3.13 2.82
    δ/% 1.84 2.88 4.96
    中间车 Δpm-c /kPa 2.62 2.49 2.30
    Δpm-t/kPa 2.59 2.67 2.30
    δ/% 1.15 6.74 <0.1
    尾车 Δpm-c /kPa 2.67 2.86 2.58
    Δpm-t/kPa 2.63 2.96 2.57
    δ/% 1.50 3.38 0.39
    下载: 导出CSV

    表  3  比例系数与拟合函数决定系数

    Table  3.   Proportional coefficients and determination coefficients of fitting functions

    隧道 车辆 参数 Δp2, 1 Δp1, 0 Δp3, 0
    1 506 m 头车 A 0.073 0.142 0.135
    R2 0.931 0.999 0.967
    中间车 A 0.070 0.117 0.128
    R2 0.859 0.992 0.997
    尾车 A 0.071 0.131 0.145
    R2 0.941 0.987 0.980
    3 083 m 头车 A 0.087 0.151 0.151
    R2 0.862 0.968 0.989
    中间车 A 0.064 0.123 0.134
    R2 0.896 0.954 0.996
    尾车 A 0.078 0.119 0.158
    R2 0.862 0.933 0.983
    5 456 m 头车 A 0.073 0.112 0.177
    R2 0.958 0.955 0.983
    中间车 A 0.051 0.104 0.149
    R2 0.973 0.874 0.859
    尾车 A 0.076 0.094 0.195
    R2 0.950 0.972 0.871
    下载: 导出CSV
  • [1] GAWTHORPE R. Pressure effects in railway tunnels[J]. Rail International, 2000, 31(4): 10-17.
    [2] BAKER C. A review of train aerodynamics, Part 2— applications[J]. Aeronautical Journal, 2014, 118(1202): 345-382. doi: 10.1017/S0001924000009179
    [3] SCHETZ J A, 胡宗民, 张德良, 等. 高速列车空气动力学[J]. 力学进展, 2003, 33(3): 404-423. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004023.htm

    SCHETZ J A, HU Zong-min, ZHANG De-liang, et al. Aerodynamics of high-speed trains[J]. Advances in Mechanics, 2003, 33(3): 404-423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004023.htm
    [4] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6/7): 469-514.
    [5] 肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm

    XIAO Jing-ping, HUANG Zhi-xiang, CHEN Li. Review of aerodynamic investigations for high speed train[J]. Mechanics in Engineering, 2013, 35(2): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm
    [6] 万晓燕, 吴剑. 时速200 km动车组通过隧道时空气动力学效应现场试验与研究[J]. 现代隧道技术, 2006, 43(1): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200601007.htm

    WAN Xiao-yan, WU Jian. In-situ test and study on the aerodynamic effect of the rolling stock passing through tunnels with a speed of 200 km/h[J]. Modern Tunnelling Technology, 2006, 43(1): 43-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200601007.htm
    [7] 刘堂红, 田红旗. 不同外形列车过隧道实车试验的比较分析[J]. 中国铁道科学, 2008, 29(1): 51-55. doi: 10.3321/j.issn:1001-4632.2008.01.011

    LIU Tang-hong, TIAN Hong-qi. Comparison analysis of the full-scale train tests for trains with different shapes passing tunnel[J]. China Railway Science, 2008, 29(1): 51-55. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.01.011
    [8] 何德华, 陈厚嫦, 张超. 高速列车通过隧道压力波特性试验研究[J]. 铁道机车车辆, 2014, 34(5): 17-20, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201405006.htm

    HE De-hua, CHEN Hou-chang, ZHANG Chao. Test study on tunnel pressure wave for EMU[J]. Railway Locomotive and Car, 2014, 34(5): 17-20, 124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201405006.htm
    [9] NIU Ji-qiang, SUI Yang, YU Qiu-jun, et al. Aerodynamics of railway train/tunnel system: a review of recent research[J]. Energy and Built Environment, 2020, 1(4): 351-375. doi: 10.1016/j.enbenv.2020.03.003
    [10] 陈厚嫦, 张岩, 何德华, 等. 时速350 km高速铁路隧道气动效应基本规律试验研究[J]. 中国铁道科学, 2014, 35(1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201401010.htm

    CHEN Hou-chang, ZHANG Yan, HE De-hua, et al. Experimental study on the basic laws of the aerodynamic effect of 350 km·h-1 high speed railway tunnel[J]. China Railway Science, 2014, 35(1): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201401010.htm
    [11] 张岩, 陈厚嫦, 何德华. CRH2C和CRH380A动车组不同头型对隧道气动效应影响的试验研究[J]. 铁道机车车辆, 2014, 34(1): 17-22, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201401005.htm

    ZHANG Yan, CHEN Hou-chang, HE De-hua. Test research on aerodynamics effects in tunnels of different nose shapes of CRH2C and CRH380A EMUs[J]. Railway Locomotive and Car, 2014, 34(1): 17-22, 27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201401005.htm
    [12] 韩运动, 姚松, 陈大伟, 等. 基于实车试验的高速列车隧道压力波影响因素[J]. 中南大学学报(自然科学版), 2017, 48(5): 1404-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201705037.htm

    HAN Yun-dong, YAO Song, CHEN Da-wei, et al. Influential factors of tunnel pressure wave on high-speed train by real vehicle test[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1404-1412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201705037.htm
    [13] KO Y Y, CHEN C H, HOE T, et al. Field measurements of aerodynamic pressures in tunnels induced by high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100(1): 19-29. doi: 10.1016/j.jweia.2011.10.008
    [14] LIU Feng, YAO Song, ZHANG Jie, et al. Field measurements of aerodynamic pressures in high-speed railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 72: 97-106. doi: 10.1016/j.tust.2017.11.018
    [15] SAKUMA Y, SUZUKI M, IDO A, et al. Measurement of air velocity and pressure distributions around high-speed trains on board and on the ground[J]. Journal of Mechanical Systems for Transportation and Logistics, 2010, 3(1): 110-118. doi: 10.1299/jmtl.3.110
    [16] SUZUKI M. Aerodynamic vibration of high-speed train and its countermeasures[R]. Nagoya: Mingcheng University, 2012.
    [17] SOMASCHINI C, ARGENTINI T, BRAMBILLA E, et al. Full-scale experimental investigation of the interaction between trains and tunnels[J]. Applied Sciences, 2020, 10(20): 7189. doi: 10.3390/app10207189
    [18] 王建宇, 吴剑, 万晓燕. 车辆的密封性及瞬变压力向列车内传递规律[J]. 现代隧道技术, 2009, 46(3): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200903005.htm

    WANG Jian-yu, WU Jian, WAN Xiao-yan. Air tightness of carriages and the law of transient pressure transfering into the train[J]. Modern Tunnelling Technology, 2009, 46(3): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200903005.htm
    [19] SRIVASTAVA S, SIVASANKAR G, DUA G. A review of research into aerodynamic concepts for high speed trains in tunnels and open air and the air-tightness requirements for passenger comfort[J]. Journal of Rail and Rapid Transit, 2022, 236(9): 1011-1025. doi: 10.1177/09544097211072973
    [20] SCHWANITZ S, WITTKOWSKI M, ROLNY V, et al. Continuous assessments of pressure comfort on a train: a field-laboratory comparison[J]. Applied Ergonomics, 2013, 44(1): 11-17. doi: 10.1016/j.apergo.2012.04.004
    [21] LIU Tang-hong, CHEN Xiao-dong, LI Wen-hui, et al. Field study on the interior pressure variations in high-speed trains passing through tunnels of different lengths[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 54-66.
    [22] LIU Tang-hong, CHEN Ming-yang, CHEN Xiao-dong, et al. Field test measurement of the dynamic tightness performance of high-speed trains and study on its influencing factors[J]. Measurement, 2019, 138: 602-613.
    [23] 王志钧, 梅元贵. 高速列车压力舒适性环境特征的实车试验研究[J]. 空气动力学学报, 2021, 39(5): 170-180. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202105018.htm

    WANG Zhi-jun, MEI Yuan-gui. Field study of pressure comfort environment characteristics of high-speed train[J]. Acta Aerodynamica Sinica, 2021, 39(5): 170-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202105018.htm
    [24] 李明, 张雷, 刘斌, 等. 动静态气密性分析方法及其在动车组上的应用[J]. 力学学报, 2021, 53(1): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101011.htm

    LI Ming, ZHANG Lei, LIU Bin, et al. Dynamic and static air tightness analysis method and their application in EMU[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 126-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101011.htm
    [25] 刘陆拓. 西十高铁秦岭马白山特长隧道分合修方案研究[J]. 铁道标准设计, 2020, 64(9): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202009022.htm

    LIU Lu-tuo. Study on single double-track tunnel tube and twin single-track tunnel tubes of Qinling Mabaishan Extra Long Tunnel on Xi'an-Shiyan High-Speed Railway[J]. Railway Standard Design, 2020, 64(9): 120-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202009022.htm
    [26] PALMERO N M, VARDY A. Tunnel gradients and aural health criterion for train passengers[J]. Journal of Rail and Rapid Transit, 2014, 228(7): 821-832.
    [27] 孔繁冰, 梅元贵. 高速列车通过隧道群压力波计算方法初探[J]. 兰州交通大学学报, 2009, 28(3): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200903033.htm

    KONG Fan-bing, MEI Yuan-gui. Calculating method of pressure wave by a high-speed train through tunnel group[J]. Journal of Lanzhou Jiaotong University, 2009, 28(3): 133-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200903033.htm
    [28] 周丹. 长大隧道、隧道群空气动力效应算法研究及应用[D]. 长沙: 中南大学, 2007.

    ZHOU Dan. Research on the long tunnel and tunnel group's aerodynamic algorithm and its application[D]. Changsha: Central South University, 2007. (in Chinese)
    [29] 汪超, 薛齐文. 高速列车通过短隧道群空气动力学效应分析[J]. 铁道建筑, 2014, 54(9): 71-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201409021.htm

    WANG Chao, XUE Qi-wen. Aerodynamic effect analysis of high-speed trains passing through short tunnels[J]. Railway Engineering, 2014, 54(9): 71-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201409021.htm
    [30] MEI Yuan-gui. A generalized numerical simulation method for pressure waves generated by high-speed trains passing through tunnels[J]. Advances in Structural Engineering, 2013, 16(8): 1427-1436.
    [31] 梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202106009.htm

    MEI Yuan-gui, ZHANG Zhi-chao, DU Jian, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202106009.htm
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  108
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回