留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑交叉口渠化区排队特征的元胞传输模型

黄玮 胡洋

黄玮, 胡洋. 考虑交叉口渠化区排队特征的元胞传输模型[J]. 交通运输工程学报, 2023, 23(2): 212-224. doi: 10.19818/j.cnki.1671-1637.2023.02.015
引用本文: 黄玮, 胡洋. 考虑交叉口渠化区排队特征的元胞传输模型[J]. 交通运输工程学报, 2023, 23(2): 212-224. doi: 10.19818/j.cnki.1671-1637.2023.02.015
HUANG Wei, HU Yang. Cell transmission model considering queuing characteristics of channelized zone at intersections[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 212-224. doi: 10.19818/j.cnki.1671-1637.2023.02.015
Citation: HUANG Wei, HU Yang. Cell transmission model considering queuing characteristics of channelized zone at intersections[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 212-224. doi: 10.19818/j.cnki.1671-1637.2023.02.015

考虑交叉口渠化区排队特征的元胞传输模型

doi: 10.19818/j.cnki.1671-1637.2023.02.015
基金项目: 

国家自然科学基金项目 52102401

广东省基础与应用基础研究基金项目 2019A1515111083

详细信息
    作者简介:

    黄玮(1986-),女,广西贺州人,中山大学副教授,工学博士,从事交通系统建模、优化与控制研究

  • 中图分类号: U491.2

Cell transmission model considering queuing characteristics of channelized zone at intersections

Funds: 

National Natural Science Foundation of China 52102401

Guangdong Basic and Applied Basic Research Foundation 2019A1515111083

More Information
  • 摘要: 为了更准确地描述城市道路交叉口交通流演化规律,以具有进口道展宽设计和合用车道功能设计的信号控制交叉口为研究对象,综合考虑排队消散过程、分流过程、可选择性换道和合用车道4个现实因素改进了元胞传输模型(CTM);结合交叉口的几何特征,以车道组为单位提出了路段元胞划分方法;在此基础上,调整了元胞发送能力函数对排队的消散过程,并进行了建模;在分流过程建模中引入阻塞因子来描述不同车道组空间排队的相互影响,以平衡相邻车道组空间排队为目标对过渡区可选择性换道行为进行了建模,并在合用车道建模中考虑了不同流向车流的冲突效应;结合实际交叉口,选取车道组周期最大排队长度作为评价指标,验证了改进CTM的有效性。试验结果表明:改进CTM可以同时估计不同车道组的排队长度,随着直行车流比例的增大,改进CTM的估计误差逐渐减小,不同流量场景下,路段最大排队长度的平均绝对误差(MAE)、均方根误差(RMSE)和加权平均绝对百分比误差(WMAPE)的平均值分别小于16.43、21.36 m和13.51%;与基准方法相比,不同场景下改进CTM对路段最大排队长度的MAE的减小幅度为15.31%~90.03%,且在高流量场景下估计精度的提升效果更明显。由此可见,改进CTM能够更准确地刻画交叉口交通流运行特征,并提高排队长度估计精度,可作为交通管理与控制的重要依据。

     

  • 图  1  两个相邻交叉口间路段的几何结构

    Figure  1.  Geometry configuration of road section between two adjacent intersections

    图  2  路段元胞划分

    Figure  2.  Cell division of road section

    图  3  改进CTM的排队消散过程

    Figure  3.  Queue discharge process for improved CTM

    图  4  车道组间的相互影响

    Figure  4.  Interactions between lane groups

    图  5  仿真交叉口的几何结构和信号配时

    Figure  5.  Geometry and signal timing of simulation intersection

    图  6  路段最大排队长度估计误差的分布特征

    Figure  6.  Distribution characteristics of estimation errors of maximum queue length at road section

    图  7  场景3中不同影响因素下估计结果对比

    Figure  7.  Comparison of estimation results under different influencing factors in scenario 3

    图  8  场景2中改进CTM与基准CTM估计结果对比

    Figure  8.  Comparison of estimation results obtained by improved CTM and benchmark CTM in scenario 2

    图  9  实证交叉口

    Figure  9.  Empirical intersection

    图  10  实证场景周期最大排队长度估计结果

    Figure  10.  Cycle-based maximum queue length estimation results for empirical scenario

    表  1  仿真场景设置

    Table  1.   Simulation scenario settings

    场景 路段交通量/(veh·h-1) 左转、直行、右转流向比例
    1 850 0.1:0.8:0.1
    2 950 0.2:0.6:0.2
    3 1 050 0.3:0.4:0.3
    4 750 0.1:0.8:0.1
    5 800 0.2:0.6:0.2
    6 850 0.3:0.4:0.3
    下载: 导出CSV

    表  2  改进CTM的参数设置

    Table  2.   Parameter settings of improved CTM

    参数 取值
    自由流速度vf/(km·h-1) 54
    激波速度w/(km·h-1) 15.7
    饱和流量qc/(veh·h-1) 1 620
    阻塞流量qjam/(veh·h-1) 500~1 500
    阻塞密度kjm/(veh·km-1) 133
    时间步长Δt/s 1
    元胞长度l/m 15
    上游混行区长度/m 420
    过渡区长度/m 30
    下游渠化区长度/m 60
    下载: 导出CSV

    表  3  不同场景下估计性能的均值

    Table  3.   Mean values of estimation performance under different scenarios

    评价指标 车道组 高流量 低流量
    场景1 场景2 场景3 场景4 场景5 场景6
    MAE/m 车道组1 5.94 12.48 9.03 4.35 6.45 6.93
    车道组2 1.99 2.29 10.25 3.73 6.53 9.84
    车道组3 1.96 1.98 5.53 3.26 6.50 9.91
    路段最大排队长度 10.71 15.66 16.43 6.09 8.26 11.52
    RMSE/m 车道组1 8.61 16.57 13.32 6.16 8.31 9.02
    车道组2 3.06 3.66 14.36 5.67 9.17 12.74
    车道组3 2.98 3.25 10.07 4.92 9.10 13.66
    路段最大排队长度 13.49 19.88 21.36 7.73 10.57 14.74
    WMAPE/% 车道组1 59.40 42.91 13.93 36.07 20.57 12.41
    车道组2 2.39 2.77 15.47 4.98 10.58 20.09
    车道组3 2.34 2.35 6.75 4.20 9.00 13.44
    路段最大排队长度 5.32 8.23 12.70 6.19 10.32 13.51
    下载: 导出CSV

    表  4  改进CTM所得路段最大排队长度的MAE减小百分比均值

    Table  4.   Mean percentage reductions in MAE of maximum queue length at road sections obtained by improved CTM %

    场景 车道组1 车道组2 车道组3 路段最大排队长度
    1 34.65 56.82 63.50 90.03
    2 19.24 57.95 64.65 83.67
    3 36.93 23.88 10.98 44.45
    4 25.17 45.38 56.94 71.69
    5 20.15 24.29 15.72 20.92
    6 31.86 44.99 2.02 15.31
    下载: 导出CSV

    表  5  实证场景下的估计误差

    Table  5.   Estimation errors for empirical scenario

    评价指标 车道组 改进CTM 基准CTM
    MAE/m 车道组1 4.44 5.70
    车道组2 4.73 5.92
    车道组3 5.28 6.64
    路段最大排队长度 5.68 10.15
    RMSE/m 车道组1 5.93 7.47
    车道组2 5.61 7.95
    车道组3 7.21 9.31
    路段最大排队长度 7.05 14.56
    WMAPE/% 车道组1 19.37 24.85
    车道组2 6.36 7.97
    车道组3 7.07 8.90
    路段最大排队 6.62 11.83
    下载: 导出CSV
  • [1] GUO Qiang-qiang, LI Li, BAN X J. Urban traffic signal control with connected and automated vehicles: a survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 313-334. doi: 10.1016/j.trc.2019.01.026
    [2] 李素兰, 张谢东, 施俊庆, 等. 信号控制交叉口交通流建模与通行能力分析[J]. 公路交通科技, 2017, 34(12): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201712017.htm

    LI Su-lan, ZHANG Xie-dong, SHI Jun-qing, et al. Traffic flow modeling and capacity analysis of signalized intersection[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 108-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201712017.htm
    [3] LIGHTHILL M J, WHITHAM G B. On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 229(1178): 317-345.
    [4] RICHARDS P I. Shock waves on the highway[J]. Operations Research, 1956, 4(1): 42-51. doi: 10.1287/opre.4.1.42
    [5] DAGANZO C F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
    [6] DAGANZO C F. The cell transmission model, Part Ⅱ: network traffic[J]. Transportation Research Part B: Methodological, 1995, 29(2): 79-93. doi: 10.1016/0191-2615(94)00022-R
    [7] 孙剑, 殷炬元, 黎淘宁. 快速路入口匝道瓶颈宏观交通流模型[J]. 交通运输工程学报, 2019, 19(3): 122-133. doi: 10.3969/j.issn.1671-1637.2019.03.013

    SUN Jian, YIN Ju-yuan, LI Tao-ning. Macroscopic traffic flow model of expressway on-ramp bottlenecks[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 122-133. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.013
    [8] WANG Yi-bing, ZHAO Ming-ming, YU Xiang-hua, et al. Real-time joint traffic state and model parameter estimation on freeways with fixed sensors and connected vehicles: state-of-the-art overview, methods, and case studies[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103444. doi: 10.1016/j.trc.2021.103444
    [9] ADACHER L, TIRIOLO M. A macroscopic model with the advantages of microscopic model: a review of cell transmission model's extensions for urban traffic networks[J]. Simulation Modelling Practice and Theory, 2018, 86: 102-119. doi: 10.1016/j.simpat.2018.05.003
    [10] SRIVASTAVA A, JIN Wen-long, LEBACQUE J P. A modified cell transmission model with realistic queue discharge features at signalized intersections[J]. Transportation Research Part B: Methodological, 2015, 81: 302-315. doi: 10.1016/j.trb.2015.05.013
    [11] RONCOLI C, PAPAGEORGIOU M, PAPAMICHAIL I. Traffic flow optimisation in presence of vehicle automation and communication systems—Part I: a first-order multi-lane model for motorway traffic[J]. Transportation Research Part C: Emerging Technologies, 2015, 57: 241-259. doi: 10.1016/j.trc.2015.06.014
    [12] HAN Yu, YUAN Yu-fei, HEGYI A, et al. New extended discrete first-order model to reproduce propagation of jam waves[J]. Transportation Research Record, 2016, 2560(1): 108-118. doi: 10.3141/2560-12
    [13] HAN Yu, HEGYI A, YUAN Yu-fei, et al. Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 405-420. doi: 10.1016/j.trc.2017.02.009
    [14] YUAN Kai, KNOOP V L, HOOGENDOORN S P. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: application to homogeneous road stretches and discontinuities[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 465: 472-485. doi: 10.1016/j.physa.2016.08.060
    [15] KONTORINAKI M, SPILIOPOULOU A, RONCOLI C, et al. First-order traffic flow models incorporating capacity drop: overview and real-data validation[J]. Transportation Research Part B: Methodological, 2017, 106: 52-75. doi: 10.1016/j.trb.2017.10.014
    [16] SHIRKE C, BHASKAR A, CHUNG E. Macroscopic modelling of arterial traffic: an extension to the cell transmission model[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 54-80. doi: 10.1016/j.trc.2019.05.033
    [17] 龙建成. 城市道路交通拥堵传播规律及消散控制策略研究[D]. 北京: 北京交通大学, 2009.

    LONG Jian-cheng. Studies on congestion propagation properties and dissipation control strategies of urban road traffic[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese)
    [18] 姚凯斌, 林培群. 一种考虑交叉口因素的改进元胞传输模型[J]. 交通运输系统工程与信息, 2017, 17(3): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703016.htm

    YAO Kai-bin, LIN Pei-qun. An improved cell transmission model considering intersection factor[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703016.htm
    [19] 胡晓健, 王炜, 盛慧. 基于可变元胞传输模型的城市道路交通流估计方法[J]. 交通运输系统工程与信息, 2010, 10(4): 73-78. doi: 10.3969/j.issn.1009-6744.2010.04.011

    HU Xiao-jian, WANG Wei, SHENG Hui. Urban traffic flow prediction with variable cell transmission model[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 73-78. (in Chinese) doi: 10.3969/j.issn.1009-6744.2010.04.011
    [20] 刘昊翔. 基于元胞传输模型的交叉口交通控制与优化研究[D]. 北京: 北京交通大学, 2011.

    LIU Hao-xiang. Traffic controlling and optimizing at an intersection based on the cell transmission model[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [21] LI Zi-chuan. Modeling arterial signal optimization with enhanced cell transmission formulations[J]. Journal of Transportation Engineering, 2011, 137(7): 445-454. doi: 10.1061/(ASCE)TE.1943-5436.0000232
    [22] LIU Yue, CHANG G L. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(1): 130-144. doi: 10.1016/j.trc.2010.04.005
    [23] TIRIOLO M, ADACHER L, CIPRIANI E. An urban traffic flow model to capture complex flow interactions among lane groups for signalized intersections[J]. Procedia—Social and Behavioral Sciences, 2014, 111: 839-848. doi: 10.1016/j.sbspro.2014.01.118
    [24] CAREY M, BALIJEPALLI C, WATLING D. Extending the cell transmission model to multiple lanes and lane-changing[J]. Networks and Spatial Economics, 2015, 15(3): 507-535. doi: 10.1007/s11067-013-9193-7
    [25] KIM Y, CHOI S, YEO H. Extended urban cell transmission model using agent-based modeling[J]. Procedia Computer Science, 2020, 170: 354-361. doi: 10.1016/j.procs.2020.03.058
    [26] KIM Y, CHOI S, PARK J, et al. Agent-based mesoscopic urban traffic simulation based on multi-lane cell transmission model[J]. Procedia Computer Science, 2019, 151: 240-247. doi: 10.1016/j.procs.2019.04.035
    [27] SUBRAVETI H H S N, KNOOP V L, VAN AREM B. First order multi-lane traffic flow model—an incentive based macroscopic model to represent lane change dynamics[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 1758-1779. doi: 10.1080/21680566.2019.1700846
    [28] 秦严严, 张健, 陈凌志, 等. 手动-自动驾驶混合交通流元胞传输模型[J]. 交通运输工程学报, 2020, 20(2): 229-238. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002019.htm

    QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, et al. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 229-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002019.htm
    [29] HAO Zhen-zhen, BOEL R, LI Zhi-wu. Model based urban traffic control, Part Ⅰ: local model and local model predictive controllers[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 61-81. doi: 10.1016/j.trc.2018.09.026
    [30] WU Ning. Modelling blockage probability and capacity of shared lanes at signalized intersections[J]. Procedia—Social and Behavioral Sciences, 2011, 16: 481-491. doi: 10.1016/j.sbspro.2011.04.469
    [31] ZHAO Shu-zhi, LIANG Shi-dong, LIU Hua-sheng, et al. CTM based real-time queue length estimation at signalized intersection[J]. Mathematical Problems in Engineering, 2015, 2015: 328712.
    [32] LONG Jian-cheng, GAO Zi-you, ZHAO Xiao-mei, et al. Urban traffic jam simulation based on the cell transmission model[J]. Networks and Spatial Economics, 2011, 11(1): 43-64.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  204
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回