留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现代无轨列车横摆稳定控制策略

张立伟 刘晋琦 张孟磊 宋中超

张立伟, 刘晋琦, 张孟磊, 宋中超. 现代无轨列车横摆稳定控制策略[J]. 交通运输工程学报, 2023, 23(2): 240-250. doi: 10.19818/j.cnki.1671-1637.2023.02.017
引用本文: 张立伟, 刘晋琦, 张孟磊, 宋中超. 现代无轨列车横摆稳定控制策略[J]. 交通运输工程学报, 2023, 23(2): 240-250. doi: 10.19818/j.cnki.1671-1637.2023.02.017
ZHANG Li-wei, LIU Jin-qi, ZHANG Meng-lei, SONG Zhong-chao. Yaw stability control strategy of modern trackless train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 240-250. doi: 10.19818/j.cnki.1671-1637.2023.02.017
Citation: ZHANG Li-wei, LIU Jin-qi, ZHANG Meng-lei, SONG Zhong-chao. Yaw stability control strategy of modern trackless train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 240-250. doi: 10.19818/j.cnki.1671-1637.2023.02.017

现代无轨列车横摆稳定控制策略

doi: 10.19818/j.cnki.1671-1637.2023.02.017
基金项目: 

中央高校基本科研业务费专项资金项目 2022YJS154

国家重点研发计划 2016YFB1200604-B22

详细信息
    作者简介:

    张立伟(1977-), 男, 河北保定人, 北京交通大学教授, 工学博士, 从事新型载运工具与运用技术研究8134@bjtu.edu.cn

  • 中图分类号: U482.2

Yaw stability control strategy of modern trackless train

Funds: 

Fundamental Research Funds for the Central Universities 2022YJS154

National Key Research and Development Program of China 2016YFB1200604-B22

More Information
  • 摘要: 为改善现代无轨列车车体横摆稳定性和路径跟踪性能较差的问题,基于拉格朗日方程建立车辆动力学模型,分析了液压杆刚度对车辆转向性能的影响;为解决方程中含有未知约束力,导致其定量关系无法求解的问题,以横摆角速度误差和轨迹跟踪误差为优化目标,采用遗传算法离线优化了刚度参数,并利用函数插值方法在线预测,得到了不同车速、不同前轮转角下的最优液压杆刚度;为提高车辆轨迹跟踪性能,将横摆角速度跟踪误差与轨迹跟踪误差作为评价车辆横摆稳定性的标准,定义了车辆行驶过程中各个轴的侧向误差与航向角误差,基于滑模控制(SMC)算法设计了车辆横摆运动控制器,计算了期望横摆角速度,并进行了稳定性证明和稳态误差分析;由比例积分(PI)控制器计算分配到各个驱动轴的车体横摆力矩,并在U型弯路径上进行了仿真与试验。研究结果表明:车辆稳态转向时,液压杆刚度与车速、前轮转角直接相关,且在任何情况下,连接模块前部液压杆刚度一定大于后部液压杆刚度,车速在22 km·h-1左右时最优液压杆刚度最小;车速大于22 km·h-1时,速度越大,最优液压杆刚度越大,且前部液压杆刚度变化率明显大于后部;车速小于22 km·h-1时,速度越小,最优液压杆刚度越大;直线路段上车轴侧向误差小于0.03 m,航向角误差小于0.03 rad;弯道路段上车轴侧向误差小于0.06 m,航向角误差小于0.06 rad;行驶过程中,车体横摆角速度可以快速跟踪给定值,车辆的行驶稳定性得到了提高,验证了控制策略的有效性。

     

  • 图  1  现代无轨列车结构

    Figure  1.  Structure of modern trackless train

    图  2  液压杆长度随铰接角的变化

    Figure  2.  Change of hydraulic rod length with articulation angle

    图  3  车辆控制系统

    Figure  3.  Vehicle control system

    图  4  拉丁方采样结果

    Figure  4.  Latin square sampling results

    图  5  液压杆刚度与车速和前轮转角的关系

    Figure  5.  Relationships between vehicle speed, front wheel angle and hydraulic rod stiffness

    图  6  车轴中心轨迹仿真结果

    Figure  6.  Simulation results of axle center trajectories

    图  7  仿真结果

    Figure  7.  Simulation results

    图  8  等比例模型车试验平台

    Figure  8.  Experimental platform of isometric model vehicle

    图  9  车轴中心轨迹试验结果

    Figure  9.  Experimental results of axle center tracks

    图  10  试验结果

    Figure  10.  Experimental results

    表  1  车辆仿真系统参数

    Table  1.   Parameters of vehicle simulation system

    参数 驾驶模块 连接模块 拖车模块
    mi/kg 12 800 4 100 8 400
    ai/m 2.70 1.05 2.50
    li/m 5.15 1.05 2.50
    下载: 导出CSV

    表  2  模型车参数

    Table  2.   Parametersof model vehicle

    参数 驾驶模块 连接模块 拖车模块
    mi/kg 1.339 0.805 1.202
    ai/m 4.00×10-3 4.25×10-3 8.50×10-3
    li/m 1.125×10-2 4.250×10-3 8.500×10-3
    下载: 导出CSV
  • [1] 席利贺, 张欣, 耿聪, 等. 基于动态规划算法的增程式电动汽车能量管理策略优化[J]. 交通运输工程学报, 2018, 18(3): 148-156. doi: 10.3969/j.issn.1671-1637.2018.03.016

    XI Li-he, ZHANG Xin, GENG Cong, et al. Energy management strategy optimization of extended-range electric vehicle based on dynamic programming[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 148-156. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.016
    [2] 孙帮成, 刘志明, 崔涛, 等. 汽车列车多轴转向控制方法及仿真研究[J]. 机械工程学报, 2019, 55(4): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904021.htm

    SUN Bang-cheng, LIU Zhi-ming, CUI Tao, et al. Research on multi-axis steering control method and simulation of train-like vehicle[J]. Journal of Mechanical Engineering, 2019, 55(4): 154-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904021.htm
    [3] HE Yu-ping, ISLAM M M, WEBSTER T D. An integrated design method for articulated heavy vehicles with active trailer steering systems[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2010, 3(6): 158-174.
    [4] ODHAMS A M C, ROEBUCK R L, CEBON D, et al. Dynamic safety of active trailer steering systems[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2008, 222(4): 367-380. doi: 10.1243/14644193JMBD174
    [5] 朱明. 分布式驱动电动汽车横摆稳定性控制方法研究[D]. 西安: 长安大学, 2019.

    ZHU Ming. Research on yaw stability control method of distributed drive electric vehicle[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [6] 张云灵. 基于模型预测的分布式驱动电动汽车稳定性控制[D]. 长沙: 湖南大学, 2018.

    ZHANG Yun-ling. Multi-objective harmony search algorithm and its application in traffic image segmentation[D]. Changsha: Hunan University, 2018. (in Chinese)
    [7] TIAN Jie, ZENG Qing-kang, WANG Peng, et al. Active steering control based on preview theory for articulated heavy vehicles[J]. PloS One, 2021, 16(5): e0252098. doi: 10.1371/journal.pone.0252098
    [8] GAO Yu, SHEN Yan-hua, XU Tao, et al. Oscillatory yaw motion control for hydraulic power steering articulated vehicles considering the influence of varying bulk modulus[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1284-1292. doi: 10.1109/TCST.2018.2803746
    [9] WANG Bo, ZHA Hong-shan, ZHONG Guo-qi, et al. Integrated active steering control strategy for autonomous articulated vehicles[J]. International Journal of Heavy Vehicle Systems, 2020, 27(5): 565-599. doi: 10.1504/IJHVS.2020.111262
    [10] GUAN H, KIM K, WANG Bo. Comprehensive path and attitude control of articulated vehicles for varying vehicle conditions[J]. International Journal of Heavy Vehicle Systems, 2017, 24(1): 65-95. doi: 10.1504/IJHVS.2017.080961
    [11] 于志新, 宗长富, 何磊, 等. 基于LQR的重型半挂汽车列车稳定性控制策略[J]. 中国公路学报, 2011, 24(2): 114-119. doi: 10.3969/j.issn.1001-7372.2011.02.019

    YU Zhi-xin, ZONG Chang-fu, HE Lei, et al. Stability control strategy of heavy semitrailer based on LQR[J]. China Journal of Highway and Transport, 2011, 24(2): 114-119. (in Chinese) doi: 10.3969/j.issn.1001-7372.2011.02.019
    [12] 赵翾, 杨珏, 张文明, 等. 农用轮式铰接车辆滑模轨迹跟踪控制算法[J]. 农业工程学报, 2015, 31(10): 198-203. doi: 10.11975/j.issn.1002-6819.2015.10.026

    ZHAO Xuan, YANG Jue, ZHANG Wen-ming, et al. Sliding mode control algorithm for path tracking of articulated dump truck[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 198-203. (in Chinese) doi: 10.11975/j.issn.1002-6819.2015.10.026
    [13] LIU Zhi-yuan, YUE Ming, GUO Lie, et al. Trajectory planning and robust tracking control for a class of active articulated tractor-trailer vehicle with on-axle structure[J]. European Journal of Control, 2020, 54: 87-98. doi: 10.1016/j.ejcon.2019.12.003
    [14] PAZOOKI A, RAKHEJA S, CAO Dong-pu. Kineto-dynamic directional response analysis of an articulated frame steer vehicle[J]. International Journal of Vehicle Design, 2014, 65(1): 1-30. doi: 10.1504/IJVD.2014.060063
    [15] SADEGHI KATI M, FREDRIKSSON J, JACOBSON B, et al. Gain-scheduled H controller synthesis for actively steered longer and heavier commercial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(7): 2045-2065. doi: 10.1177/0954407019870352
    [16] SADEGHI KATI M, KÖROĞLU H, FREDRIKSSON J. Robust lateral control of long-combination vehicles under moments of inertia and tyre cornering stiffness uncertainties[J]. Vehicle System Dynamics, 2019, 57(12): 1847-1873. doi: 10.1080/00423114.2018.1552363
    [17] ALSHAER B J, DARABSEH T T, MOMANI A Q. Modelling and control of an autonomous articulated mining vehicle navigating a predefined path[J]. International Journal of Heavy Vehicle Systems, 2014, 21(2): 152. doi: 10.1504/IJHVS.2014.061640
    [18] OREH S H T, KAZEMI R, AZADI S. A new desired articulation angle for directional control of articulated vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2012, 226(4): 298-314. doi: 10.1177/1464419312445426
    [19] ESMAEILI N, KAZEMI R, TABATABAEI OREH S H. An adaptive sliding mode controller for the lateral control of articulated long vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2019, 233(3): 487-515. doi: 10.1177/1464419318806801
    [20] LI Zheng-chao, JING Xing-jian, SUN Bo, et al. Autonomous navigation of a tracked mobile robot with novel passive bio- inspired suspension[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2633-2644. doi: 10.1109/TMECH.2020.2987004
    [21] WAGNER S, NITZSCHE G, HUBER R. Advanced automatic steering systems for multiple articulated road vehicles[C]// ASME. Proceedings of ASME International Mechanical Engineering Congress and Exposition. San Diego: ASME, 2013: 62630.
    [22] BARBOSA F M, MARCOS L B, DA SILVA M M, et al. Robust path-following control for articulated heavy-duty vehicles[J]. Control Engineering Practice, 2019, 85: 246-256. doi: 10.1016/j.conengprac.2019.01.017
    [23] LASHGARIAN AZAD N. Dynamic modelling and stability controller development for articulated steer vehicles[D]. Waterloo: University of Waterloo, 2007.
    [24] DUDZIŃSKI P, SKURJAT A. Directional dynamics problems of an articulated frame steer wheeled vehicles[J]. Journal of KONES Powertrain and Transport, 2012, 19(1): 89-98.
    [25] FENG Jiang-hua, HU Yun-qing, YUAN Xi-wen, et al. Development and validation of an automatic all-wheel steering system for multiple-articulated rubber-tire transit[J]. IET Electrical Systems in Transportation, 2021, 11(3): 227-240. doi: 10.1049/els2.12023
    [26] WANG Wen-wei, ZHANG Wei, ZHANG Han-yu, et al. Yaw stability control through independent driving torque control of mid and rear wheels of an articulated bus[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(13): 2947-2960. doi: 10.1177/0954407020919539
    [27] ALAGAPPAN A V, RAO K V N, KUMAR R K. A comparison of various algorithms to extract magic formula tyre model coefficients for vehicle dynamics simulations[J]. Vehicle System Dynamics, 2015, 53(2): 154-178. doi: 10.1080/00423114.2014.984727
    [28] 魏畅. 多轴轮边驱动电动铰接客车的横摆稳定性研究[D]. 北京: 北京理工大学, 2017.

    WEI Chang. Research on yaw stability of multi-axle direct wheel drive articulated bus[D]. Beijing: Beijing Institute of Technology, 2007. (in Chinese)
    [29] 李鹏, 马建军, 郑志强. 采用幂次趋近律的滑模控制稳态误差界[J]. 控制理论与应用, 2011, 28(5): 619-624.

    LI Peng, MA Jian-jun, ZHENG Zhi-qiang. Sliding mode control approach based on nonlinear integrator[J]. Control Theory and Applications, 2011, 28(5): 619-624. (in Chinese)
    [30] ALIPOUR K, ROBAT A B, TARVIRDIZADEH B. Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip[J]. Mechanism and Machine Theory, 2019, 138: 16-37. doi: 10.1016/j.mechmachtheory.2019.03.038
    [31] 赵熙俊, 刘海鸥, 熊光明, 等. 自动转向滑模变结构控制参数选取方法[J]. 北京理工大学学报, 2011, 31(10): 1174-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201110008.htm

    ZHAO Xi-jun, LIU Hai-ou, XIONG Guang-ming, et al. Automatic steering sliding mode variable structure control parameter selection method[J]. Transactions of Beijing Institute of Technology, 2011, 31(10): 1174-1178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201110008.htm
    [32] 梁宝钰, 汪怡平, 刘珣, 等. 基于滑模理论的高速车辆侧风稳定性控制研究[J]. 汽车工程, 2022, 44(1): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202201017.htm

    LIANG Bao-yu, WANG Yi-ping, LIU Xun, et al. Study on crosswind stability control of high-speed vehicle based on sliding mode theory[J]. Automotive Engineering, 2022, 44(1): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202201017.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  937
  • HTML全文浏览量:  392
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回