留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车受电弓气动噪声研究综述

刘海涛 王文宇 周新 张长亮 肖乾

刘海涛, 王文宇, 周新, 张长亮, 肖乾. 高速列车受电弓气动噪声研究综述[J]. 交通运输工程学报, 2023, 23(3): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.03.001
引用本文: 刘海涛, 王文宇, 周新, 张长亮, 肖乾. 高速列车受电弓气动噪声研究综述[J]. 交通运输工程学报, 2023, 23(3): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.03.001
LIU Hai-tao, WANG Wen-yu, ZHOU Xin, ZHANG Chang-liang, XIAO Qian. Review on aerodynamic noise analysis of high-speed train pantographs[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.03.001
Citation: LIU Hai-tao, WANG Wen-yu, ZHOU Xin, ZHANG Chang-liang, XIAO Qian. Review on aerodynamic noise analysis of high-speed train pantographs[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.03.001

高速列车受电弓气动噪声研究综述

doi: 10.19818/j.cnki.1671-1637.2023.03.001
基金项目: 

国家自然科学基金项目 12104153

江西省主要学科学术和技术带头人培养计划项目 20204BCJL23034

详细信息
    作者简介:

    刘海涛(1986-),男,湖北宜昌人,华东交通大学副教授,工学博士,从事振动噪声控制与声源定位追踪研究

  • 中图分类号: U264

Review on aerodynamic noise analysis of high-speed train pantographs

Funds: 

National Natural Science Foundation of China 12104153

Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province 20204BCJL23034

More Information
  • 摘要: 为更深入全面了解高速列车受电弓气动噪声研究现状,阐明高速列车受电弓气动噪声机理与规律,总结了近年来国内外高速列车受电弓气动噪声的研究,概括了中国、日本、德国与法国高速列车受电弓的发展历程,分析了受电弓气动噪声源、辐射气动噪声特性以及高速列车受电弓气动噪声研究方法,探讨了高速列车受电弓气动噪声生成机理与抑制方法,总结了当前研究的主要成果。分析结果表明:受电弓作为列车顶部的重要受流装置,由多个杆件组成,在高速气流中会产生显著的有调噪声,是高速列车环境噪声污染主要来源之一;高速列车受电弓主要气动噪声源分布在弓头、铰链机构、绝缘子、底架等部件的迎风侧位置,研究受电弓气动噪声的手段有实车试验、风洞试验以及数值模拟;增加附属装置可以有效控制气动噪声,如增加导流罩、喷射气流、等离子体驱动器等,但这些方法增加了系统的复杂度;基于仿生学原理改变杆件表面微结构,可以显著抑制受电弓湍流旋涡的生成,从而大幅降低气动噪声;优化杆件截面形状以及空间结构设计,可以减少阻力及湍流旋涡的生成,进而有效控制气动噪声。可见,多种途径可以降低受电弓气动噪声,但工程落地的可行性、气动噪声与气动阻力及弓网接触稳定性的耦合关系,仍需进一步深入研究。

     

  • 图  1  对称面的气动噪声分布

    Figure  1.  Aerodynamic noise distribution on symmetrical surface

    图  2  多通道声像同步采集系统

    Figure  2.  Multi-channel acoustic imaging synchronous acquisition system

    图  3  声全息试验测试的高速列车噪声源分布

    Figure  3.  Distributions of noise sources in high-speed train measured by acoustic holography experiment

    图  4  声学风洞试验段及高速列车模型

    Figure  4.  Acoustic wind tunnel experimental section and high-speed train model

    图  5  1∶8缩比高速列车模型与测试麦克风阵列

    Figure  5.  1∶8 scaled high-speed train model and testing microphone array

    图  6  受电弓和导流罩的风洞试验模型

    Figure  6.  Wind tunnel experimental models of pantograph and wind deflectors

    图  7  列车模型与远场麦克风测试点位置

    Figure  7.  Train model and far field microphone test point locations

    图  8  带喷射气流装置的受电弓弓头结构

    Figure  8.  Pantograph head structure with jet flow device

    图  9  带有通孔的TPS单臂式受电弓弓角

    Figure  9.  Bow angle of TPS single-arm pantograph with through-hole

    图  10  等离子体驱动器的构造与安装位置

    Figure  10.  Construction and installation position of plasma actuators

    图  11  表面粘附多孔金属材料的受电弓

    Figure  11.  Pantograph with surface adhered porous metal materials

    图  12  长耳鸮翼前缘锯齿结构

    Figure  12.  Serrated structure of leading edge of long eared owlwing

    图  13  仿生杆件模型

    Figure  13.  Bionic rod models

    图  14  带表面凹坑结构的圆柱形杆件模型

    Figure  14.  Cylindrical rod model with surface concave structures

    图  15  监测点布置

    Figure  15.  Layout of monitoring points

    图  16  远场R=5 m处的声压级分布

    Figure  16.  Sound pressure level distribution at a far field of R=5 m

    图  17  非对称截面杆的仿生模型

    Figure  17.  Bionic model of asymmetric cross section rod

    图  18  改进的受电弓几何模型

    Figure  18.  Improved geometric model of pantograph

    图  19  椭圆形截面优化模型

    Figure  19.  Optimized elliptical cross-section model

    图  20  展向波纹杆的几何描述

    Figure  20.  Geometric description of spanwise waviness bar

    图  21  四种展向波纹杆试验模型

    Figure  21.  Four experimental models of spanwise waviness bar

    图  22  菱形受电弓

    Figure  22.  Rhombic pantograph

    图  23  T型受电弓

    Figure  23.  T-type pantograph

    图  24  PS9037低噪声受电弓

    Figure  24.  PS9037 low-noise pantograph

    图  25  新型单臂式受电弓

    Figure  25.  New type single-arm pantograph

    表  1  处于升弓状态下不同风速远场的总声压级

    Table  1.   Total sound pressure levels at different wind speeds in far field during pantograph lifted state

    风速/(km·h-1) 状态 总声压级/dB(A)
    测点3 测点4
    200 升弓 71.7 71.0
    导流罩+升弓 71.5 70.9
    230 升弓 75.6 74.9
    导流罩+升弓 75.1 74.7
    250 升弓 77.8 77.3
    导流罩+升弓 77.5 77.2
    下载: 导出CSV

    表  2  处于降弓状态下不同风速远场的总声压级

    Table  2.   Total sound pressure levels at different wind speeds in far field during pantograph folded state

    风速/(km·h-1) 状态 总声压级/dB(A)
    测点3 测点4
    200 降弓 71.5 71.1
    导流罩+降弓 70.3 70.5
    230 降弓 75.2 75.0
    导流罩+降弓 73.9 74.0
    250 降弓 77.5 77.1
    导流罩+降弓 76.3 76.3
    下载: 导出CSV

    表  3  三种流速下4种杆件的总声压级

    Table  3.   Overall sound pressure levels of four types of rods at three flow velocities

    杆件类型 不同流速(m·s-1)的声压级/dB
    14 28 42
    光滑圆柱形 75.7 84.6 92.2
    锯齿形 66.6 81.1 96.3
    V型凹环形 76.1 86.2 88.1
    波纹形 74.8 84.7 85.5
    下载: 导出CSV

    表  4  两种流速下4种杆件的总声压级

    Table  4.   Overall sound pressure levels of four types of rods at two flow velocities

    杆件类型 不同流速(m·s-1)的声压级/dB
    56 106
    光滑圆柱形 116.62 130.93
    O型凸环形 115.53 118.28
    螺旋箍条形 93.55 107.55
    打孔四棱柱形 108.57 120.56
    下载: 导出CSV

    表  5  不同模型在不同监测点下的声压级

    Table  5.   Sound pressure levels at different monitoring points for different models dB

    模型 监测点1 监测点19 监测点37 监测点55
    光滑圆柱形杆件模型Ⅰ 56.9 73.0 56.7 73.0
    凹坑杆件模型Ⅱ-1 63.7 71.5 64.0 71.5
    凹坑杆件模型Ⅱ-2 63.6 71.1 64.0 71.1
    凹坑杆件模型Ⅱ-3 63.8 70.6 64.0 70.6
    下载: 导出CSV

    表  6  直方杆和7种展向波纹杆的频谱峰值和总声压级

    Table  6.   Spectral peaks and total sound pressure levels of straight square bar and 7 types of spanwise waviness bars

    模型 频谱峰值/dB 总声压级/dB
    θ=90° θ=90° θ=180°
    直方杆 82.9 94.9 82.2
    λ=4D, ω/D=0.12 80.9 94.3 79.6
    λ=4D, ω/D=0.24 78.7 90.3 76.3
    λ=4D, ω/D=0.36 63.8 76.3 62.9
    λ=4D, ω/D=0.48 65.8 60.4
    λ=2D, ω/D=0.12 82.5 93.8 77.7
    λ=2D, ω/D=0.24 80.4 91.6 74.3
    λ=2D, ω/D=0.36 64.2 78.7 68.7
    下载: 导出CSV
  • [1] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004

    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Engineering Science, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004
    [2] WU Zhen-feng, YANG En-yu, DING Wang-cai. Design of large-scale streamlined head cars of high-speed trains and aerodynamic drag calculation[J]. Archives of Transport, 2017, 44(4): 89-97. doi: 10.5604/01.3001.0010.6164
    [3] 朱剑月, 张清, 徐凡斐, 等. 高速列车气动噪声研究综述[J]. 交通运输工程学报, 2021, 21(3): 39-56. doi: 10.19818/j.cnki.1671-1637.2021.03.003

    ZHU Jian-yue, ZHANG Qing, XU Fan-fei, et al. Review on aerodynamic noise research of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 39-56. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.003
    [4] 谭晓明, 杨志刚, 吴晓龙, 等. CIT500车外噪声源频谱分解模型的试验研究[J]. 铁道学报, 2017, 39(7): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201707006.htm

    TAN Xiao-ming, YANG Zhi-gang, WU Xiao-long, et al. Experimental study on frequency spectrum component model of noise source outside CIT500 train[J]. Journal of the China Railway Society, 2017, 39(7): 32-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201707006.htm
    [5] 王秀颖. 高速列车气动噪声数值计算及降噪设计研究[D]. 大连: 大连交通大学, 2019.

    WANG Xiu-ying. Numerical calculation of aerodynamic noise and design of noise reduction for high speed trains[D]. Dalian: Dalian Jiaotong University, 2019. (in Chinese)
    [6] 杨艳. 电力机车受电弓滑板材料的发展研究[J]. 科技经济市场, 2016(5): 90. doi: 10.3969/j.issn.1009-3788.2016.05.069

    YANG Yan. Development of pantograph sliding plate materials for electric locomotive[J]. Scientific and Technological Economic Market, 2016(5): 90. (in Chinese) doi: 10.3969/j.issn.1009-3788.2016.05.069
    [7] 滕莉娜. 高速动车组用受电弓概述[J]. 时代农机, 2018, 45(12): 230-231. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNJ201812191.htm

    TENG Li-na. Overview of pantograph for high speed EMUs[J]. Times Agricultural Machinery, 2018, 45(12): 230-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNNJ201812191.htm
    [8] 侯艳, 张武. 高速受电弓概况及发展[J]. 科技经济市场, 2016(2): 173-174. doi: 10.3969/j.issn.1009-3788.2016.02.128

    HOU Yan, ZHANG Wu. Overview and development of high speed pantograph[J]. Science and Technology Economic Market, 2016(2): 173-174. (in Chinese) doi: 10.3969/j.issn.1009-3788.2016.02.128
    [9] LU Wei-te, WANG Yan, ZHANG Chun-qin. Research on the distribution of aerodynamic noises of high-speed trains[J]. Journal of Vibroengineering, 2017, 19(2): 1438-1452. doi: 10.21595/jve.2017.18139
    [10] 孙艳军, 夏娟, 梅元贵. 高速列车气动噪声及减噪措施介绍[J]. 铁道机车车辆, 2009, 29(3): 25-28. doi: 10.3969/j.issn.1008-7842.2009.03.008

    SUN Yan-jun, XIA Juan, MEI Yuan-gui. Introduction of aerodynamic noise generated by high-speed train and the reduction of the noise[J]. Railway Locomotive and Vehicle, 2009, 29(3): 25-28. (in Chinese) doi: 10.3969/j.issn.1008-7842.2009.03.008
    [11] 宋洪磊, 吴俊勇, 吴燕, 等. 空气动力作用对高速受电弓受流特性影响研究[J]. 电气化铁道, 2010, 95(1): 28-32. doi: 10.3969/j.issn.1007-936X.2010.01.009

    SONG Hong-lei, WU Jun-yong, WU Yan, et al. Study on aerodynamic effect on currentfluid characteristics of high speed pantograph[J]. Electrified Railway, 2010, 95(1): 28-32. (in Chinese) doi: 10.3969/j.issn.1007-936X.2010.01.009
    [12] 李瑞平, 周宁, 张卫华, 等. 受电弓气动抬升力计算方法与分析[J]. 铁道学报, 2012, 34(8): 26-32. doi: 10.3969/j.issn.1001-8360.2012.08.005

    LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Calculation and analysis of pantograph aerodynamic uplift force[J]. Journal of the China Railway Society, 2012, 34(8): 26-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.08.005
    [13] 肖友刚, 时彧. 高速列车受电弓绝缘子的气动噪声计算及外形优化[J]. 铁道科学与工程学报, 2012, 9(6): 72-76. doi: 10.3969/j.issn.1672-7029.2012.06.013

    XIAO You-gang, SHI Yu. Aerodynamic noise calculation and shape optimization of high-speed train pantograph insulators[J]. Journal of Railway Science and Engineering, 2012, 9(6): 72-76. (in Chinese) doi: 10.3969/j.issn.1672-7029.2012.06.013
    [14] 杨康, 马峰超, 朱星光, 等. 基于Fluent的受电弓空气动力特性分析[J]. 电气化铁道, 2015, 128(4): 14-16. doi: 10.3969/j.issn.1007-936X.2015.04.005

    YANG Kang, MA Feng-chao, ZHU Xing-guang, et al. Analysis of aerodynamic characteristics of pantograph based on fluent[J]. Electrified Railway, 2015, 128(4): 14-16. (in Chinese) doi: 10.3969/j.issn.1007-936X.2015.04.005
    [15] 张雪. 基于空气动力学的高速受电弓研究[D]. 成都: 西南交通大学, 2015.

    ZHANG Xue. Research of high speed pantograph based on aerodynamics[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [16] 王俊. 高速列车受电弓气动噪声及其控制研究[D]. 大连: 大连交通大学, 2016.

    WANG Jun. Pantograph aerodynamic noise of high speed train and its control research[D]. Dalian: Dalian Jiaotong University, 2016. (in Chinese)
    [17] 张亮, 张继业, 李田, 等. 高速列车不同位置受电弓非定常气动特性研究[J]. 机械工程学报, 2017, 53(12): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712018.htm

    ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Research on unsteady aerodynamic characteristics of pantographs in different positions of high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(12): 147-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201712018.htm
    [18] 高阳, 李新一, 吴健. 高速列车受电弓气动噪声研究[J]. 铁道机车车辆, 2017, 37(5): 54-57, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201705014.htm

    GAO Yang, LI Xin-yi, WU Jian. Aerodynamic noise research on high-speed train pantograph[J]. Railway Locomotive and Rolling Stock, 2017, 37(5): 54-57, 78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201705014.htm
    [19] 刘海涛, 徐志龙. 基于仿生非光滑结构的高速列车受电弓杆件减阻降噪研究[J]. 噪声与振动控制, 2018, 38(增1): 269-272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1064.htm

    LIU Hai-tao, XU Zhi-long. Study on drag and noise reduction of pantograph rods based on bionic non-smooth structures[J]. Noise and Vibration Control, 2018, 38(S1): 269-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1064.htm
    [20] 王洋洋, 周劲松, 宫岛, 等. 高速列车受电弓气动噪声分布特性及仿生降噪研究[J]. 噪声与振动控制, 2018, 38(增1): 348-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1082.htm

    WANG Yang-yang, ZHOU Jin-song, GONG Dao, et al. Study on bionic noise reduction and aerodynamic noise distribution characteristics for high-speed train's pantographs[J]. Noise and Vibration Control, 2018, 38(S1): 348-352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1082.htm
    [21] 戚凯科, 袁天辰, 杨俭. 高速列车受电弓气动噪声降噪研究[J]. 计算机仿真, 2019, 36(9): 173-180. doi: 10.3969/j.issn.1006-9348.2019.09.035

    QI Kai-ke, YUAN Tian-chen, YANG Jian. Research on aerodynamic noise reduction of high-speed train pantograph[J]. Computer Simulation, 2019, 36(9): 173-180. (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.09.035
    [22] 霍艳忠. 高速列车受电弓导流装置优化设计与气动特性分析[D]. 兰州: 兰州交通大学, 2020.

    HUO Yan-zhong. Optimization design and aerodynamic characteristics analysis on pantograph diversion device of high-speed trains[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [23] 贾尚帅, 张文敏, 韩铁礼, 等. 高速动车组气动噪声试验与仿真分析[J]. 应用声学, 2021, 40(4): 611-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN202104017.htm

    JIA Shang-shuai, ZHANG Wen-min, HAN Tie-li, et al. Test and simulation analysis on aerodynamic noise of high-speed train[J]. Journal of Applied Acoustics, 2021, 40(4): 611-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN202104017.htm
    [24] 袁丁, 苗晓丹, 袁天辰, 等. 高速列车受电弓空腔射流降噪方法研究[J]. 智能计算机与应用, 2021, 11(5): 103-110. doi: 10.3969/j.issn.2095-2163.2021.05.020

    YUAN Ding, MIAO Xiao-dan, YUAN Tian-chen, et al. Aerodynamic noise analysis and noise reduction of pantograph cavity of high-speed train[J]. Intelligent Computer and Applications, 2021, 11(5): 103-110. (in Chinese) doi: 10.3969/j.issn.2095-2163.2021.05.020
    [25] 史佳伟, 李牧皛, 张淑敏, 等. 低温对受电弓气动性能的影响[J]. 机械工程学报, 2021, 57(2): 190-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202102021.htm

    SHI Jia-wei, LI Mu-xiao, ZHANG Shu-min, et al. Effect of low temperature on aerodynamic performance of pantograph[J]. Chinese Journal of Mechanical Engineering, 2021, 57(2): 190-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202102021.htm
    [26] 史佳伟, 葛帅, 圣小珍. 受电弓舱对受电弓区域气动噪声的影响[J]. 振动与冲击, 2021, 40(23): 216-222. doi: 10.13465/j.cnki.jvs.2021.23.029

    SHI Jia-wei, GE Shuai, SHENG Xiao-zhen. Effects of pantograph recess on aerodynamic noise in pantograph area[J]. Journal of Vibration and Shock, 2021, 40(23): 216-222. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.23.029
    [27] 郭璐, 苗晓丹, 杨俭, 等. 高速列车受电弓射流降噪仿真分析与风洞试验研究[J]. 铁道学报, 2023, 45(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202301003.htm

    GUO Lu, MIAO Xiao-dan, YANG Jian, et al. Study on noise reduction of high-speed train pantograph by using jet device based on numerical simulation and wind tunnel test[J]. Journal of the China Railway Society, 2023, 45(1): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202301003.htm
    [28] 张长亮. 基于展向波纹穿孔结构的受电弓杆件减阻降噪研究[J]. 郑州铁路职业技术学院学报, 2022, 34(3): 33-37. doi: 10.13920/j.cnki.zztlzyjsxyxb.2022.03.023

    ZHANG Chang-liang. Research on drag and noise reduction of pantograph rods based on spanwise corrugated perforated structure[J]. Journal of Zhengzhou Railway Technical College, 2022, 34(3): 33-37. (in Chinese) doi: 10.13920/j.cnki.zztlzyjsxyxb.2022.03.023
    [29] 安睿. 高速动车组受电弓流场及减阻降噪研究[D]. 北京: 北京交通大学, 2022.

    AN Rui. Research on flow field, drag reduction and noise reduction of pantograph of high-speed EMU[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [30] 秦登, 戴志远, 周宁, 等. 受电弓下沉对其气动和声学行为的影响[J]. 中国机械工程, 2022, 33(20): 2509-2519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202220015.htm

    QIN Deng, DAI Zhi-yuan, ZHOU Ning. et al. Effects of pantograph subsidence on its aerodynamic and acoustic behaviors[J]. China Mechanical Engineering, 2022, 33(20): 2509-2519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202220015.htm
    [31] 李启良, 李卓明, 魏峥. 圆柱与扭转柱杆件受电弓气动与噪声研究[J]. 同济大学学报(自然科学版), 2021, 49(8): 1177-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202108015.htm

    LI Qi-liang, LI Zhuo-ming, WEI Zheng. Research on aerodynamic and noise of pantographs with circular cylinder and twisted cylinder[J]. Journal of Tongji University (Natural Science), 2021, 49(8): 1177-1183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202108015.htm
    [32] 刘舫泊. 高速列车车体受电弓平顶声振特性及降噪措施研究[D]. 成都: 西南交通大学, 2021.

    LIU Fang-po. Investigating the vibroacoustic characteristics and noise-reduction measures of pantograph flat roof of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [33] 张毅超, 尹皓, 伍向阳, 等. 动车组受电弓开闭口对车外噪声影响试验研究[J]. 铁道标准设计, 2021, 65(12): 163-167. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202112029.htm

    ZHANG Yi-chao, YIN Hao, WU Xiang-yang, et al. Experimental research on the influence of the opening and closing of EMU pantograph on external noise[J]. Railway Standard Design, 2021, 65(12): 163-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202112029.htm
    [34] 张军, 郭涛, 孙帮成, 等. 高速列车气动噪声源特性研究[J]. 铁道学报, 2015, 37(6): 10-18. doi: 10.3969/j.issn.1001-8360.2015.06.002

    ZHANG Jun, GUO Tao, SUN Bang-cheng, et al. Research on characteristics of aerodynamic noise source for high-speed train[J]. Journal of the China Railway Society, 2015, 37(6): 10-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.002
    [35] 董继蕾. 高速动车组受电弓气动噪声数值仿真分析[J]. 噪声与振动控制, 2018, 38(增1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1017.htm

    DONG Ji-lei. Numerical simulation analysis of aerodynamic noise for pantographs of high-speed trains[J]. Noise and Vibration Control, 2018, 38(S1): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1017.htm
    [36] 杜健, 梁建英, 田爱琴. 高速列车受电弓气动噪声特性分析[J]. 西南交通大学学报, 2015, 50(5): 935-941. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201505025.htm

    DU Jian, LIANG Jian-ying, TIAN Ai-qin. Analysis of aeroacoustics characteristics of pantograph of high-speed trains[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 935-941. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201505025.htm
    [37] LEE Y, RHO J, KIM K H, et al. Experimental studies on the aerodynamic characteristics of a pantograph suitable for a high-speed train[J]. Journal of Rail and Rapid Transit, 2015, 229(2): 136-149.
    [38] 吴晓龙, 杨志刚, 谭晓明, 等. EMU6车外受电弓噪声源特征试验研究[J]. 噪声与振动控制, 2018, 38(5): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201805020.htm

    WU Xiao-long, YANG Zhi-gang, TAN Xiao-ming, et al. Experimental research on noise source characteristics of EMU6 train's external pantographs[J]. Noise and Vibration Control, 2018, 38(5): 107-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201805020.htm
    [39] 袁贤浦, 苗晓丹, 袁天辰, 等. 高速列车受电弓气动噪声分析与弓头降噪研究[J]. 铁道学报, 2021, 43(12): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202112005.htm

    YUAN Xian-pu, MIAO Xiao-dan, YUAN Tian-chen, et al. Aerodynamic noise analysis high-speed train pantograph and study on noise reduction of pantograph head[J]. Journal of the China Railway Society, 2021, 43(12): 38-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202112005.htm
    [40] 翟婉明, 蔡成标. 机车-轨道耦合振动对受电弓-接触网系统动力学的影响[J]. 铁道学报, 1998, 20(1): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB801.004.htm

    ZHAI Wan-ming, CAI Cheng-biao. Effect of locomotive-track coupling vibrations on pantograph-catenary system dynamics[J]. Journal of the China Railway Society, 1998, 20(1): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB801.004.htm
    [41] 范子臣. 高速列车转向架和受电弓的气动噪声分析[D]. 成都: 西南交通大学, 2015.

    FAN Zi-chen. Numerical analysis on aerodynamic noise of the high-speed train bogie and pantograph[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [42] 侍荣春. 基于杆件截面优化的高速列车受电弓低噪声设计[D]. 成都: 西南交通大学, 2018.

    SHI Rong-chun. Low-noise design of high-speed train pantograph based on rod section optimization[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [43] 柳丛彦, 李人宪, 陆晓柳. 高速列车受电弓气动噪声频谱分析[J]. 机械设计与制造, 2019(1): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201901038.htm

    LIU Cong-yan, LI Ren-xian, LU Xiao-liu. Spectrum analysis of aerodynamic noise on high-speed train pantograph[J]. Machinery Design and Manufacture, 2019(1): 142-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201901038.htm
    [44] 陆晓柳, 李人宪, 柳丛彦. CRH380A型高速列车远场气动噪声计算分析[J]. 机械设计与制造, 2017(增1): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ2017S1037.htm

    LU Xiao-liu, LI Ren-xian, LIU Cong-yan. Far-field aerodynamic noise of CRH380A high-speed train[J]. Machinery Design and Manufacture, 2017(S1): 137-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ2017S1037.htm
    [45] 孙振旭, 姚永芳, 杨焱, 等. 国内高速列车气动噪声研究进展概述[J]. 空气动力学学报, 2018, 36(3): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201803004.htm

    SUN Zhen-xu, YAO Yong-fang, YANG Yan, et al. Overview of research progress on aerodynamic noise of high speed trains in China[J]. Journal of Aerodynamics, 2018, 36(3): 385-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201803004.htm
    [46] 董孝卿, 黄欣, 吴宁. 高速铁道车辆辐射噪声特性初步研究[J]. 铁道机车车辆, 2009, 29(4): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200904010.htm

    DONG Xiao-qing, HUANG Xin, WU Ning. Research on emission noise property of high-speed railway cars[J]. Railway Rolling Stock, 2009, 29(4): 42-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200904010.htm
    [47] 苗丰. 高速车辆声场的多孔线性全息重构与声像同步再现[D]. 北京: 清华大学, 2016.

    MIAO Feng. Multi-aperture linear holography reconstruction and sound field visualization for high-speed vehicles[D]. Beijing: Tsinghua University, 2016. (in Chinese)
    [48] HE Bin, XIAO Xin-biao, ZHOU Qiang, et al. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2014, 15(12): 1019-1033. doi: 10.1631%2Fjzus.A1400307.pdf
    [49] 蔡国华. 高速列车受电弓气动力特性测量[J]. 流体力学实验与测量, 2004(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200401012.htm

    CAI Guo-hua. Aerodynamic characteristic measurements on pantograph of super express train[J]. Experiment and Measurement of Fluid Mechanics, 2004(1): 53-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200401012.htm
    [50] 蔡国华. 高速列车受电弓低速风洞试验技术[J]. 铁道工程学报, 2006(4): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200604015.htm

    CAI Guo-hua. The experimental technique of pantograph of super express train in low speed wind tunnel[J]. Journal of Railway Engineering, 2006(4): 67-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200604015.htm
    [51] NOGER C, PATRAT J C, PEUBE J, et al. Aeroacoustical study of the TGV pantograph recess[J]. Journal of Sound and Vibration, 2000, 231(3): 563-575.
    [52] 张冰, 刘会平, 韩通新. 气动力作用对弓网受流影响的研究分析[J]. 铁道机车车辆, 2012, 32(3): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201203037.htm

    ZHANG Bing, LIU Hui-ping, HAN Tong-xin. Influence of the aerodynamic forces on current-collection system between pantograph and overhead line[J]. Railway Locomotive and Car, 2012, 32(3): 132-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201203037.htm
    [53] 付善强, 陈大伟, 梁建英, 等. 高速受电弓气动特性风洞试验研究[J]. 铁道机车车辆, 2013, 33(3): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201303026.htm

    FU Shan-qiang, CHEN Da-wei, LIANG Jian-ying, et al. Investigation on wind tunnel tests of the aerodynamic characteristics of high-speed pantograph[J]. Railway Locomotive and Vehicle, 2013, 33(3): 123-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201303026.htm
    [54] 高阳, 王毅刚, 王金田, 等. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术, 2013, 32(6): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201306016.htm

    GAO Yang, WANG Yi-gang, WANG Jin-tian, et al. Testing study of on aerodynamic noise for high speed train model in aero-acoustic wind tunnel[J]. Acoustics Technology, 2013, 32(6): 506-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201306016.htm
    [55] 杨志刚, 李保林, 王毅刚. 支撑地板对高速列车模型风洞气动噪声试验影响[J]. 声学技术, 2013, 32(6): 500-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201306015.htm

    YANG Zhi-gang, LI Bao-lin, WANG Yi-gang. Influence of supporting plate on aero-acoustic wind tunnel test for high speed train[J]. Acoustics Technology, 2013, 32(6): 500-505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201306015.htm
    [56] KITAGAWA T, NAGAKURA K. Aerodynamic noise generated by Shinkansen cars[J]. Journal of Sound and Vibration, 2000, 231(3): 913-924.
    [57] SUEKI T, TAKAISHI T, IKEDA M. Application of porous material to reduce aerodynamic sound from bluff bodies[J]. Fluid Dynamic Research, 2010, 42(1): 1-14.
    [58] SUEKI T, IKEDA M, TAKAISHI T, et al. Reduction of aerodynamic noise from high-speed pantograph using porous materials[J]. Journal of Environment and Engineering, 2010, 5(3): 469-484.
    [59] 张亚东, 韩璐, 李明, 等. 高速列车受电弓气动噪声降噪[J]. 机械工程学报, 2017, 53(6): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706014.htm

    ZHANG Ya-dong, HAN Lu, LI Ming, et al. Reduction of aerodynamic noise of high-speed train pantograph[J]. Journal of Mechanical Engineering, 2017, 53(6): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706014.htm
    [60] 仇轶, 由长福, 祁海鹰, 等. 多相流动的直接数值模拟进展[J]. 力学进展, 2003(4): 507-517. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200304007.htm

    QIU Yi, YOU Chang-fu, QI Hai-ying, et al. Direct numerical simulations of multiphase flows[J]. Advances in Mechanics, 2003(4): 507-517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200304007.htm
    [61] 刘加利, 于梦阁, 张继业, 等. 基于大涡模拟的高速列车横风运行安全性研究[J]. 铁道学报, 2011, 33(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201104005.htm

    LIU Jia-li, YU Meng-ge, ZHANG Ji-ye, et al. Study on the running safety of high-speed train under crosswind by large eddy simulation[J]. Journal of the China Railway Society, 2011, 33(4): 13-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201104005.htm
    [62] 张亮. 高速列车气动外形优化设计研究[D]. 成都: 西南交通大学, 2017.

    ZHANG Liang. Study on aerodynamic shape optimization design of high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [63] MORRIS P J, LONG L N, BANGALORE A, et al. A parallel three-dimensional computational aeroacoustics method using nonlinear disturbance equations[J]. Journal of Computational Physics, 1997, 133(1): 56-74.
    [64] 王睿. 高速列车隧道内车外非定常流动特性数值模拟研究[D]. 兰州: 兰州交通大学, 2014.

    WANG Rui. Numerical simulation on characteristics of unsteady flow in high-speed railway tunnel[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese)
    [65] WILLIAMS J E F, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342.
    [66] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 231(1187): 505-514.
    [67] 韩忠华, 宋文萍, 乔志德. 基于FW-H方程的旋翼气动声学计算研究[J]. 航空学报, 2003(5): 400-404. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200305004.htm

    HAN Zhong-hua, SONG Wen-ping, QIAO Zhi-de. Aeroacoustic calculation for helicopter rotor in hover and in forward flight based on FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2003(5): 400-404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200305004.htm
    [68] 陈雨豪, 葛剑敏, 丁叁叁, 等. 600 km·h-1高速磁浮列车气动噪声仿真与试验分析[J]. 同济大学学报(自然科学版), 2023, 51(2): 247-255. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202302012.htm

    CHEN Yu-hao, GE Jian-min, DING San-san, et al. Simulation and experimental analysis of aerodynamic noise generated by 600 km·h-1 high-speed maglev train[J]. Journal of Tongji University (Natural Science), 2023, 51(2): 247-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202302012.htm
    [69] 刘加利. 高速列车气动噪声特性分析与降噪研究[D]. 成都: 西南交通大学, 2013.

    LIU Jia-li. Study on characteristics analysis and control of aeroacoustics of high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
    [70] ZHANG Ya-dong, ZHANG Ji-ye, LI Tian, et al. Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph[J]. Science China (Technological Sciences), 2017, 60(4): 561-575.
    [71] 姚永芳, 孙振旭, 刘文, 等. 高速列车受电弓气动噪声特性分析[J]. 北京大学学报(自然科学版), 2020, 56(3): 385-398. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202003001.htm

    YAO Yong-fang, SUN Zhen-xu, LIU Wen, et al. Analysis of aerodynamic noise characteristics of pantograph in high speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 385-398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202003001.htm
    [72] 郭迪龙, 姚拴宝, 刘晨辉, 等. 高速列车受电弓非定常气动特性研究[J]. 铁道学报, 2012, 34(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201211002.htm

    GUO Di-long, YAO Shuan-bao, LIU Chen-hui, et al. Unsteady aerodynamic characteristics of high-speed pantograph[J]. Journal of the China Railway Society, 2012, 34(11): 16-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201211002.htm
    [73] 王成强, 邢海英, 郑继峰. 基于CAA的高速动车组气动噪声仿真研究[J]. 华东交通大学学报, 2015, 32(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201501002.htm

    WANG Cheng-qiang, XING Hai-ying, ZHENG Ji-feng. Simulation study on aerodynamic noise of the high speed trains based on CAA[J]. Journal of East China Jiaotong University, 2015, 32(1): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201501002.htm
    [74] 孙振旭, 王一伟, 安亦然. 高速列车气动噪声的计算研究[J]. 水动力学研究与进展A辑, 2010, 25(5): 660-668. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201005013.htm

    SUN Zhen-xu, WANG Yi-wei, AN Yi-ran. Computational study on aerodynamic sound from high-speed trains[J]. Journal of Hydrodynamics, 2010, 25(5): 660-668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201005013.htm
    [75] 黄凯莉, 袁天辰, 杨俭, 等. 基于射流的高速列车受电弓空腔气动噪声降噪方法[J]. 铁道学报, 2020, 42(7): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007008.htm

    HUANG Kai-li, YUAN Tian-chen, YANG Jian, et al. Approach of reduction of aerodynamic noise of pantograph cavity of high-speed train based on jet[J]. Journal of the China Railway Society, 2020, 42(7): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007008.htm
    [76] 崔健, 袁天辰, 杨俭. 高速列车气动噪声特性及其受电弓降噪研究[J]. 计算机仿真, 2018, 35(11): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201811025.htm

    CUI Jian, YUAN Tian-chen, YANG Jian. Research on aerodynamic noise characterization of high-speed train and noise reduction of it's pantograph[J]. Computer Simulation, 2018, 35(11): 123-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201811025.htm
    [77] LIGHTHILL M J. On sound generated aerodynamically Ⅰ. General theory[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1952, 211(1107): 564-587.
    [78] 杨晓宇, 高阳, 程亚军, 等. 高速列车气动噪声Lighthill声类比的有限元分析[J]. 噪声与振动控制, 2011, 31(4): 80-84, 127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201104020.htm

    YANG Xiao-yu, GAO Yang, CHENG Ya-jun. et al. Finite elements analysis of high-speed train wind noise in Lighthill's acoustic analogy[J]. Noise and Vibration Control, 2011, 31(4): 80-84, 127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201104020.htm
    [79] 辛承华. 高速列车风挡及受电弓噪声控制技术研究[D]. 北京: 北京交通大学, 2022.

    XIN Cheng-hua. Research on windscreen and pantograph noise control technology for high-speed trains[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [80] 方晨宇. CRH380B型高速列车空气动力噪声的数值模拟研究[D]. 兰州: 兰州交通大学, 2019.

    FANG Chen-yu. Numerical simulation of aerodynamic noise of CRH380B high speed train[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
    [81] 李辉, 肖新标, 李志辉, 等. 某型受电弓300 km·h-1速度下气动噪声初步分析[J]. 铁道学报, 2016, 38(9): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609003.htm

    LI Hui, XIAO Xin-biao, LI Zhi-hui, et al. Preliminary investigation into aerodynamic noise of a certain type of pantograph under speed of 300 km·h-1[J]. Journal of Railway Society, 2016, 38(9): 18-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609003.htm
    [82] 杨帆, 郑百林, 贺鹏飞. 高速列车集电部气动噪声数值模拟[J]. 计算机辅助工程, 2010, 19(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201001014.htm

    YANG Fan, ZHENG Bai-lin, HE Peng-fei. Numerical simulation on aerodynamic noise of power collection equipment for high-speed trains[J]. Computer Aided Engineering, 2010, 19(1): 44-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201001014.htm
    [83] YU Hua-hua, LI Jia-chun, ZHANG Hui-qin. On aerodynamic noises radiated by the pantograph system of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(3): 399-410.
    [84] 丁叁叁. 高速列车车体设计关键技术研究[D]. 北京: 北京交通大学, 2016.

    DING San-san. Study on the key technology of the high-speed train carbody[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [85] 陈羽, 高阳, 王毅刚, 等. 导流罩对受电弓气动噪声影响的风洞实验研究[J]. 声学技术, 2018, 37(5): 475-481. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201805015.htm

    CHEN Yu, GAO Yang, WANG Yi-gang, et al. Wind tunnel experimental research on the effect of guide cover on aerodynamic noise of pantograph[J]. Acoustics Technology, 2018, 37(5): 475-481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201805015.htm
    [86] 蔡国华, 刘志明, 武振锋, 等. 高速列车受电弓导流罩气动噪声特性分析[J]. 机械科学与技术, 2022, DOI: 10.13433/j.cnki.1003-8728.20220109.

    CAI Guo-hua, LIU Zhi-ming, WU Zhen-feng, et al. Analysis of aerodynamic noise characteristics of pantograph fairing of high-speed train[J/OL]. Mechanical Science and Technology, 2022, DOI: 10.13433/j.cnki.1003-8728.20220109. (inChinese)
    [87] IKEDA M, SUZUKI M, YOSHIDA K, et al. Application of jet ejection to control contact force of pantograph for high-speed trains[C]//Railway Technical Research Institute. Proceedings of 6th Symposium on Smart Control Turbulence. Tokyo: Railway Technical Research Institute, 2005: 311-319.
    [88] TAKAISHI T, IKEDA M. Numerical method for evaluating aeroacoustic sound sources[J]. Quarterly Report of RTRI, 2005, 46(1): 23-28.
    [89] IKEDA M, TAKAISHI T. Perforated pantograph horn Aeolian tone suppression mechanism[J]. Quarterly Report of RTRI, 2004, 45(3): 169-174.
    [90] MITSUMOJI T, SATO Y, IKEDA M, et al. A basic study on aerodynamic noise reduction techniques for a pantograph head using plasma actuators[J]. Quarterly Report of RTRI, 2014, 55(3): 184-189.
    [91] 石磊. 圆柱杆件气动噪声仿生控制研究[D]. 长春: 吉林大学, 2013.

    SHI Lei. Research on control of aerodynamic noise of circular cylinder using bio-inspired method[D]. Changchun: Jilin University, 2014. (in Chinese)
    [92] 王文强. 高速列车受电弓气动噪声仿生控制试验及数值模拟研究[D]. 长春: 吉林大学, 2014.

    WANG Wen-qiang. Experimental and numerical study on aerodynamic noise control of high-speed train pantograph using bionic method[D]. Changchun: Jilin University, 2014. (in Chinese)
    [93] 侍荣春, 李辉, 韩健, 等. 类高尔夫球表面处理对受电弓气动噪声的影响[J]. 噪声与振动控制, 2018, 38(4): 81-85, 197. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201804017.htm

    SHI Rong-chun, LI Hui, HAN Jian, et al. Study on the effect of golf-like surface treatment on pantograph's noise[J]. Noise and Vibration Control, 2018, 38(4): 81-85, 197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201804017.htm
    [94] CAO Yan, BAI Yu, WANG Qiang-feng. Complexity simulation on application of asymmetric bionic cross-section rod in pantographs of high-speed trains[J]. Complexity, 2018, 2018: 1-12.
    [95] IGLESIAS E L, THOMPSON D J, SMITH M G. Component- based model to predict aerodynamic noise from high-speed train pantographs[J]. Journal of Sound and Vibration, 2017, 394: 280-305.
    [96] IGLESIAS E L, THOMPSON D J, SMITH M G. Experimental study of the aerodynamic noise radiated by cylinders with different cross-sections and yaw angles[J]. Journal of Sound and Vibration, 2016, 361: 108-129.
    [97] RHO J H, JEONG S, KIM K. Optimal shape of blunt device for high speed vehicle[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(3): 285-295.
    [98] LIU X W, HU Z W, THOMPSON D J, et al. Reduction of aerodynamic noise from square bars by introducing spanwise waviness[J]. Journal of Sound and Vibration, 2018, 435: 323-349.
    [99] IKEDA M, MITSUMOJI T, SUEKI T, et al. Aerodynamic noise reduction in pantographs by shape-smoothing of the panhead and its support and by use of porous material in surface coverings[J]. Quarterly Report of RTRI, 2010, 51(4): 220-226.
    [100] SUEKI T, IKEDA M, TAKAISHI T. Aerodynamic noise reduction using porous materials and their application to high-speed pantographs[J]. Quarterly Report of RTRI, 2009, 50(1): 26-31.
    [101] 池田充, 刘阳春. 最近的受电弓降噪技术[J]. 国外铁道车辆, 2011, 48(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD201103009.htm

    IKEDA M, LIU Yang-chun. The latest noise reduction technology in pantographs[J]. Foreign Railway Rolling Stock, 2011, 48(3): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD201103009.htm
  • 加载中
图(25) / 表(6)
计量
  • 文章访问数:  1318
  • HTML全文浏览量:  388
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回