留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双弓受流动力学的弓网接触电弧分布

周虹屹 刘志刚 熊嘉铭 徐钊 邓云川

周虹屹, 刘志刚, 熊嘉铭, 徐钊, 邓云川. 基于双弓受流动力学的弓网接触电弧分布[J]. 交通运输工程学报, 2023, 23(3): 77-87. doi: 10.19818/j.cnki.1671-1637.2023.03.005
引用本文: 周虹屹, 刘志刚, 熊嘉铭, 徐钊, 邓云川. 基于双弓受流动力学的弓网接触电弧分布[J]. 交通运输工程学报, 2023, 23(3): 77-87. doi: 10.19818/j.cnki.1671-1637.2023.03.005
ZHOU Hong-yi, LIU Zhi-gang, XIONG Jia-ming, XU Zhao, DENG Yun-chuan. Arc distribution in pantograph-catenary contact based on double-pantograph current collection dynamics[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 77-87. doi: 10.19818/j.cnki.1671-1637.2023.03.005
Citation: ZHOU Hong-yi, LIU Zhi-gang, XIONG Jia-ming, XU Zhao, DENG Yun-chuan. Arc distribution in pantograph-catenary contact based on double-pantograph current collection dynamics[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 77-87. doi: 10.19818/j.cnki.1671-1637.2023.03.005

基于双弓受流动力学的弓网接触电弧分布

doi: 10.19818/j.cnki.1671-1637.2023.03.005
基金项目: 

国家自然科学基金项目 U1734202

四川省科技计划项目 2021JDRC0008

中铁二院工程集团有限责任公司科研项目 KYY2020132(20-22)

详细信息
    作者简介:

    周虹屹(1993-),男,四川南充人,西南交通大学工学博士研究生,从事电气化铁路弓网关系研究

    刘志刚(1975-),男,河南巩义人,西南交通大学教授,工学博士

  • 中图分类号: U229

Arc distribution in pantograph-catenary contact based on double-pantograph current collection dynamics

Funds: 

National Nature Science Foundation of China U1734202

Science and Technology Plan Project of Sichuan Province 2021JDRC0008

Research Project of China Railway Eryuan Engineering Group Co., Ltd. KYY2020132(20-22)

More Information
  • 摘要: 针对双弓受流情况下发生的电弧问题,基于经典电接触理论分析了弓网接触面微观结构与弓网接触电弧的产生机理,提出了接触电弧发生率算法;考虑双弓受流条件下接触网波动传播规律分析了双弓耦合系统动力学模型,建立接触网有限元模型与受电弓多体动力学模型,获取不同后弓静态抬升力下的前后弓接触力;结合接触电弧发生率算法与获取的前后弓接触力,计算多工况下前后弓接触电弧发生率,分析其在对应的接触力下接触电弧分布规律,并提出减小接触电弧发生率的措施。研究结果表明:在前弓上发生的接触电弧发生率远小于后弓上的概率,前弓均值仅为后弓的32%;后弓静态抬升力的变化对前弓接触电弧发生率影响很小,4种工况下前弓接触电弧发生率均在1.5×10-3~5.0×10-3内波动,无明显变化规律;后弓接触电弧发生率随后弓静态抬升力的增大显著减小,随着抬升力从55 N升高至85 N,后弓接触电弧发生率平均降低了42%;前弓上接触电弧发生次数随接触力的变化无明显变化规律,后弓静态抬升力越大其分布越均匀;后弓上接触电弧发生次数分布随接触力增大而减少,主要分布于接触力低值区间内;接触力在70~80 N以及大于170 N时可有效抑制前弓接触电弧的发生,接触力大于70 N时可以有效抑制后弓接触电弧的发生。

     

  • 图  1  双弓受流弓网系统

    Figure  1.  Double-pantograph current collection pantograph-catenary system

    图  2  图接触斑点处的电流收缩及其等势面

    Figure  2.  Current constriction at contact spot and its equipotential surface

    图  3  接触斑点等效模型

    Figure  3.  Equivalent model of contact spot

    图  4  弓网相互作用过程接触斑点动态变化

    Figure  4.  Dynamic change of contact spot during pantograph-catenary interaction

    图  5  接触电弧发生机理

    Figure  5.  Occurrence mechanism of contact arc

    图  6  图受电弓结构模型

    Figure  6.  Structure model of pantograph

    图  7  接触网结构模型

    Figure  7.  Structure model of catenary

    图  8  不同后弓静态抬升力工况下前后弓接触力

    Figure  8.  Contact forces of leading and trailing pantographs under different static lifting forces of trailing pantograph

    图  9  接触电阻计算数据与测量数据对比

    Figure  9.  Comparison between calculated and measured data for contact resistance

    图  10  接触电弧计算流程

    Figure  10.  Calculation flow of contact arc

    图  11  前后弓接触电弧发生率

    Figure  11.  Contact arc occurrence rates of leading and trailing pantographs

    图  12  前后弓接触电弧对应接触力的分布

    Figure  12.  Distributions of contact arcs for leading and trailing pantographs corresponding to their contact forces

    表  1  弓网模型仿真结果分析

    Table  1.   Analysis of simulation result of pantograph-catenary model

    速度/(km·h-1) 275
    受电弓 前弓 后弓
    对比项 标准范围 仿真结果 标准范围 仿真结果
    Fm/N 143.0~144.0 143.1 142.0~144.0 143.2
    σ/N 20.2~24.7 22.9 24.4~36.2 30.8
    σ(0~5 Hz)/N 11.7~15.2 13.9 17.0~18.2 17.5
    σ(5~20 Hz)/N 16.5~19.0 18.9 16.4~27.4 26.3
    Fmax/N 185.0~199.0 189.3 203.0~252.0 240.4
    Fmin/N 92.0~102.0 95.7 56.0~88.0 74.5
    下载: 导出CSV

    表  2  前后弓接触电弧发生率均值

    Table  2.   Average values of contact arc occurrence rates of leading and trailing pantographs

    后弓静态抬升力/N 前弓接触电弧发生率 后弓接触电弧发生率
    55 0.002 83 0.014 64
    65 0.003 37 0.011 95
    75 0.003 03 0.007 51
    85 0.003 50 0.006 08
    下载: 导出CSV
  • [1] LIU Zhi-gang, SONG Yang, HAN Ye, et al. Advances of research on high-speed railway catenary[J]. Journal of Modern Transportation, 2018, 26(1): 1-23. doi: 10.1007/s40534-017-0148-4
    [2] LEE L, CAI Li, YU Feng, et al. Analysis of electrical contact temperature rise in spark gap switches with graphite electrodes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(4): 1307-1313. doi: 10.1109/TDEI.2011.5976132
    [3] 胡怡, 魏文赋, 雷栋, 等. 弓网电弧等离子体光谱特性实验[J]. 电工技术学报, 2016, 31(24): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201624007.htm

    HU Yi, WEI Wen-fu, LEI Dong, et al. Experimental investigation on spectral characteristics of pantograph-catenary arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 62-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201624007.htm
    [4] 武汉局供电处. 武汉站动车段联络线绝缘关节处燃弧情况分析报告[R]. 武汉: 武汉局供电处, 2016.

    Wuhan Power Supply Bureau. Analysis report on arcing at insulation of connecting line in EMUs of Wuhan station[R]. Wuhan: Wuhan Power Supply Bureau, 2016. (in Chinese)
    [5] 郭凤仪, 王喜利, 王智勇, 等. 弓网离线接触电流总谐波畸变率的实验研究[J]. 电工技术学报, 2015, 30(12): 261-266. doi: 10.3969/j.issn.1000-6753.2015.12.032

    GUO Feng-yi, WANG Xi-li, WANG Zhi-yong, et al. Experimental research on total harmonic distortion of contact current caused by pantograph-catenary off-line[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 261-266. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.12.032
    [6] 郭凤仪, 王喜利, 王智勇, 等. 弓网电弧辐射电场噪声实验研究[J]. 电工技术学报, 2015, 30(14): 220-225. doi: 10.19595/j.cnki.1000-6753.tces.2015.14.030

    GUO Feng-yi, WANG Xi-li, WANG Zhi-yong, et al. Research on radiated electric field noise of pantograph arc[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 220-225. (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.2015.14.030
    [7] 宋洋. 环境风下高速铁路弓网动态受流特性研究[D]. 成都: 西南交通大学, 2017.

    SONG Yang. Study on high-speed railway pantograph-catenary current collection quality under environment wind load[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [8] 鲁小兵. 基于状态估计的高速铁路受电弓主动控制方法研究[D]. 成都: 西南交通大学, 2018.

    LU Xiao-bing. State estimation-based active control strategy of high-speed railway pantograph[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [9] SONG Yang, LIU Zhi-gang, WANG Hong-rui, et al. Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements[J]. Vehicle System Dynamics, 2015, 53(10): 1455-1479. doi: 10.1080/00423114.2015.1051548
    [10] 李勇. 基于ANSYS的双弓受流仿真分析[J]. 高速铁路技术, 2017, 8(4): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201704003.htm

    LI Yong. Simulation analysis of double pantographs current collecting based on ANSYS[J]. High Speed Railway Technology, 2017, 8(4): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201704003.htm
    [11] POMBO J, AMBRÓSIO J. Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains[J]. Computers and Structures, 2013, 124: 88-101. doi: 10.1016/j.compstruc.2013.01.015
    [12] 周宁, 张卫华. 双弓作用下弓网动力学性能[J]. 西南交通大学学报, 2009, 44(4): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200904013.htm

    ZHOU Ning, ZHANG Wei-hua. Dynamic performances of pantograph-catenary system with double pantographs[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 552-557. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200904013.htm
    [13] 吴燕, 吴俊勇, 郑积浩, 等. 高速受电弓-接触网动态受流性能及双弓距离的研究[J]. 铁道学报, 2010, 32(4): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201004008.htm

    WU Yan, WU Jun-yong, ZHENG Ji-hao, et al. Study on current-collection of high-speed pantograph-catenary system and distance between two pantographs[J]. Journal of the China Railway Society, 2010, 32(4): 38-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201004008.htm
    [14] LU Xiao-bing, LIU Zhi-gang, WANG Yan-bo, et al. Robust state estimation for double pantographs with random miss measurements in high-speed railway[C]//IEEE. 2016 IEEE International Power Electronics and Motion Control Conference. New York: IEEE, 2016: 1131-1136.
    [15] XU Zhao, SONG Yang, LIU Zhi-gang. Effective measures to improve current collection quality for double pantographs and catenary based on wave propagation analysis[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6299-6309. doi: 10.1109/TVT.2020.2985382
    [16] 钱清泉, 高仕斌, 何正友, 等. 中国高速铁路牵引供电关键技术[J]. 中国工程科学, 2015, 17(4): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201504003.htm

    QIAN Qing-quan, GAO Shi-bin, HE Zheng-you, et al. Key technologies of traction power supply in China high-speed railway[J]. Strategic Study of CAE, 2015, 17(4): 9-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201504003.htm
    [17] 吴积钦. 弓网系统电弧的产生及其影响[J]. 电气化铁道, 2008, 19(2): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHD200802009.htm

    WU Ji-qin. Occurrence of arc in pantograph and overhead contact system and its interference[J]. Electric Railway, 2008, 19(2): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQHD200802009.htm
    [18] ZHANG Yan-yan, ZHANG Yong-zhen, SONG Chen-fei. Arc discharges of a pure carbon strip affected by dynamic contact force during current-carrying sliding[J]. Materials, 2018, 11(5): 796-811.
    [19] 陈忠华, 石英龙, 时光, 等. 受电弓滑板与接触网导线接触电阻计算模型[J]. 电工技术学报, 2013, 28(5): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201305027.htm

    CHEN Zhong-hua, SHI Ying-long, SHI Guang, et al. Calculation model of the contact resistance between pantograph slide and contact wire[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 188-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201305027.htm
    [20] WEI Wen-fu, YANG Ze-feng, WU Guang-ning. Characteristics of sliding electric contact between couples of carbon and metal materials[C]//IEEE. 2018 IEEE Holm Conference on Electrical Contacts. New York: IEEE, 2018: 439-443.
    [21] 郭凤仪, 陈明阳, 陈忠华, 等. 弓网滑动电接触摩擦力特性与建模研究[J]. 电工技术学报, 2018, 33(13): 2982-2990. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201813009.htm

    GUO Feng-yi, CHEN Ming-yang, CHEN Zhong-hua, et al. Research on friction characteristics and modeling of pantograph-catenary sliding electrical contact[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2982-2990. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201813009.htm
    [22] 陈忠华, 吴迪, 回立川, 等. 波动载荷下弓网滑动电接触失效研究[J]. 电工技术学报, 2019, 34(21): 4492-4500. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201921010.htm

    CHEN Zhong-hua, WU Di, HUI Li-chuan, et al. Research on failure of pantograph-catenary sliding electrical contact under fluctuation load[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4492-4500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201921010.htm
    [23] 郭凤仪, 马同立, 陈忠华, 等. 不同载流条件下滑动电接触特性[J]. 电工技术学报, 2009, 24(12): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200912005.htm

    GUO Feng-yi, MA Tong-li, CHEN Zhong-hua, et al. Characteristics of the sliding electric contact under different currents[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS200912005.htm
    [24] 李春茂, 朱宁俊, 吴广宁, 等. 弓网系统动态接触电阻数学模型的研究[J]. 高电压技术, 2015, 41(11): 3554-3560. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201511005.htm

    LI Chun-mao, ZHU Ning-jun, WU Guang-ning, et al. Investigation on the mathematical model of dynamic contact resistance of pantograph-catenary system[J]. High Voltage Engineering, 2015, 41(11): 3554-3560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201511005.htm
    [25] 吴积钦, 钱清泉. 受电弓与接触网系统电接触特性[J]. 中国铁道科学, 2008, 29(3): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200803021.htm

    WU Ji-qin, QIAN Qing-quan. Characteristics of the electrical contact between pantograph and overhead contact line[J]. China Railway Science, 2008, 29(3): 106-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200803021.htm
    [26] BRAUNOVIC M, KONCHITS V V, MYSHKIN N K. Electrical Contacts: Fundamentals, Applications and Technology[M]. Boca Raton: CRC Press, 2007.
    [27] KONCHITS V V, KIM C K. Electric current passage and interface heating[J]. Wear, 1999, 232(1): 31-40.
    [28] GREENWOOD J A, WILLIAMSOM J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London, 1966, 295: 300-319.
    [29] TURNER M J B, SWINNERTON B R G. Sparking and arcing in electrical machines[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(8): 1376-1386.
    [30] WANG Wan-gang, DONG An-ping, WU Guang-ning, et al. Study on characterization of electrical contact between pantograph and catenary[C]//IEEE. 2011 IEEE 57th Holm Conference on Electrical Contacts. New York: IEEE, 2011: 1-6.
    [31] 钟源. 基于弓网滑动电接触机理的接触力确定方法研究[D]. 成都: 西南交通大学, 2020.

    ZHONG Yuan. A new approach to desired contact force between pantograph and over head contact line system based on sliding electrical contact fundamental mechanism[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [32] 赵志远. 弓网动态作用电弧与弓网接触特性的研究[D]. 北京: 北京交通大学, 2014.

    ZHAO Zhi-yuan. Research of the dynamic arcing and the contact features in pantgraph-catenary system[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  126
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回