留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

注胶与植筋对纵连板式无砟轨道受力变形的影响

李杨 陈进杰 王建西 石现峰 蔡嘉升

李杨, 陈进杰, 王建西, 石现峰, 蔡嘉升. 注胶与植筋对纵连板式无砟轨道受力变形的影响[J]. 交通运输工程学报, 2023, 23(3): 103-113. doi: 10.19818/j.cnki.1671-1637.2023.03.007
引用本文: 李杨, 陈进杰, 王建西, 石现峰, 蔡嘉升. 注胶与植筋对纵连板式无砟轨道受力变形的影响[J]. 交通运输工程学报, 2023, 23(3): 103-113. doi: 10.19818/j.cnki.1671-1637.2023.03.007
LI Yang, CHEN Jin-jie, WANG Jian-xi, SHI Xian-feng, CAI Jia-sheng. Effects of glue injection and reinforcement anchor installation on mechanical deformation of longitudinally connected slab-type ballastless tracks[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 103-113. doi: 10.19818/j.cnki.1671-1637.2023.03.007
Citation: LI Yang, CHEN Jin-jie, WANG Jian-xi, SHI Xian-feng, CAI Jia-sheng. Effects of glue injection and reinforcement anchor installation on mechanical deformation of longitudinally connected slab-type ballastless tracks[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 103-113. doi: 10.19818/j.cnki.1671-1637.2023.03.007

注胶与植筋对纵连板式无砟轨道受力变形的影响

doi: 10.19818/j.cnki.1671-1637.2023.03.007
基金项目: 

国家重点研发计划 2021YFB2601000

中央引导地方科技发展资金项目 216Z3901G

河北省自然科学基金项目 E2021210142

河北省自然科学基金项目 E2022210086

详细信息
    作者简介:

    李杨(1991-),男,河北唐山人,石家庄铁道大学讲师,工学博士,从事铁路轨道损伤机理与防治措施研究

    通讯作者:

    陈进杰(1963-),男,河北邢台人,石家庄铁道大学教授,工学博士

  • 中图分类号: U213.2

Effects of glue injection and reinforcement anchor installation on mechanical deformation of longitudinally connected slab-type ballastless tracks

Funds: 

National Key Research and Development Program of China 2021YFB2601000

Central Leading Local Science and Technology Development Fund Project of China 216Z3901G

Natural Science Foundation of Hebei Province E2021210142

Natural Science Foundation of Hebei Province E2022210086

More Information
  • 摘要: 针对采取维修措施后纵连板式无砟轨道在高温荷载下的受力变形问题,考虑轨道板与砂浆层间界面黏结应力-位移非线性本构关系、植筋结构应力-滑移非线性本构关系,建立了纵连板式无砟轨道力学行为分析有限元模型,并对其施加非线性高温荷载,对比分析了注胶、植筋与2种措施共用对纵连板式无砟轨道受力变形与结构损伤的影响规律。研究结果表明:对于轨道板两侧存在0.2 m层间离缝、一宽窄接缝存在破损的基本工况,注胶、植筋与2种措施共用情况下邻近破损接缝的轨道板端部层间离缝最大值分别为未采取维修措施时的63%、20%和18%,破损接缝混凝土受压损伤最大值分别为未采取维修措施时的51.0%、6.8%和5.5%;对于宽窄接缝结构状态较差的纵连板式无砟轨道,植筋措施的维护效果远好于注胶措施,而2种措施共用的效果更佳;注胶措施对纵连板式无砟轨道端部垂向位移、层间损伤和宽窄接缝受压损伤的限制作用随注胶深度的增加而增强;仅采用注胶措施情况下,若要达到2种措施共用情况下邻近破损接缝的轨道板端部层间损伤的幅值范围,注胶板块数需不小于2,且双侧注胶深度均需不小于0.9 m,建议在仅采取注胶措施时,充分保证注胶维修面积。

     

  • 图  1  层间注胶与植筋

    Figure  1.  Interface glue injection and reinforcement anchors

    图  2  混合模式下的黏结应力-位移非线性本构关系

    Figure  2.  Bond stress-displacement nonlinear constitutive relationship in mixed mode

    图  3  轨道板中植筋应力-滑移非线性本构关系

    Figure  3.  Stress-slip nonlinear constitutive relationship of reinforcement anchors in track slabs

    图  4  底座板中植筋应力-滑移非线性本构关系

    Figure  4.  Stress-slip nonlinear constitutive relationship of reinforcement anchors in concrete bases

    图  5  植筋结构力学行为模拟方法

    Figure  5.  Simulation method of mechanical behavior of reinforcement anchor structure

    图  6  无砟轨道有限元模型

    Figure  6.  Finite element model of ballastless track

    图  7  植筋位置及离缝深度

    Figure  7.  Position of reinforcement anchors and seam depth

    图  8  不同维修措施下轨道板与砂浆层垂向相对位移

    Figure  8.  Vertical relative displacements between track slab and mortar layer under different maintenance measures

    图  9  不同维修措施下无砟轨道层间损伤

    Figure  9.  Interface damages of ballastless track under different maintenance measures

    图  10  不同维修措施下宽窄接缝受力状态

    Figure  10.  Stress states of wide and narrow joints under different maintenance measures

    图  11  注胶范围对A端中点垂向位移的影响

    Figure  11.  Effects of glue injection range on vertical displacement at midpoint of end A

    图  12  注胶范围对A端中点层间损伤的影响

    Figure  12.  Effects of glue injection range on interface damage at midpoint of end A

    图  13  注胶范围对A端宽窄接缝混凝土受压损伤的影响

    Figure  13.  Effects of glue injection range on compressive damage of concrete of wide and narrow joint near end A

    图  14  注胶范围对B端宽窄接缝混凝土纵向压应力的影响

    Figure  14.  Effects of glue injection range on longitudinal compressive stress of concrete of wide and narrow joint near end B

    表  1  内聚力模型参数

    Table  1.   Parameters of cohesive zone model

    界面 方向 黏结强度/MPa 黏结刚度/(GN·m-3) 断裂韧度/(mJ·mm-2)
    原始界面 法向 0.013 7 0.274 0.004 1
    切向 0.010 0 0.200 0.003 0
    注胶界面 法向 0.137 0 2.740 0.041 0
    切向 0.100 0 2.000 0.030 0
    下载: 导出CSV

    表  2  注胶轨道板数量与编号的关系

    Table  2.   Relationship between quantity and number of track slab with glue injection

    数量/块 编号
    1 3#
    2 3#、4#
    3 2#、3#、4#
    4 2#、3#、4#、5#
    5 1#、2#、3#、4#、5#
    下载: 导出CSV
  • [1] 朱永见, 赵国堂, 郑建. CRTSⅡ型板式无砟轨道层间离缝产生原因分析[J]. 铁道学报, 2021, 43(2): 111-117. doi: 10.3969/j.issn.1001-8360.2021.02.014

    ZHU Yong-jian, ZHAO Guo-tang, ZHENG Jian. Analysis on causes of gap under CRTS Ⅱ slab ballastless track[J]. Journal of the China Railway Society, 2021, 43(2): 111-117. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.02.014
    [2] 粟淼, 朱琦治, 戴公连, 等. 考虑界面初始黏结缺陷的CRTSⅡ型板式无砟轨道温度变形[J]. 交通运输工程学报, 2020, 20(5): 73-81. doi: 10.19818/j.cnki.1671-1637.2020.05.005

    SU Miao, ZHU Qi-zhi, DAI Gong-lian, et al. Temperature deformation of CRTSⅡ slab ballastless track considering interfacial initial bond defects[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 73-81. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.005
    [3] SONG Li, LIU Hu-bin, CUI Cheng-xin, et al. Thermal deformation and interfacial separation of a CRTS Ⅱ slab ballastless track multilayer structure used in high-speed railways based on meteorological data[J]. Construction and Building Materials, 2020, 237: 117528. doi: 10.1016/j.conbuildmat.2019.117528
    [4] ZHANG Yan-rong, WU Kai, GAO Liang, et al. Study on the interlayer debonding and its effects on the mechanical properties of CRTS Ⅱ slab track based on viscoelastic theory[J]. Construction and Building Materials, 2019, 224: 387-407. doi: 10.1016/j.conbuildmat.2019.07.089
    [5] ZHOU Rui, ZHU Xuan, HUANG Jia-qi, et al. Structural damage analysis of CRTS Ⅱ slab track with various interface models under temperature combinations[J]. Engineering Failure Analysis, 2022, 134: 106029. doi: 10.1016/j.engfailanal.2022.106029
    [6] ZHONG Yang-long, GAO Liang, ZHANG Yan-rong. Effect of daily changing temperature on the curling behavior and interface stress of slab track in construction stage[J]. Construction and Building Materials, 2018, 185: 638-647. doi: 10.1016/j.conbuildmat.2018.06.224
    [7] 刘钰, 陈攀, 赵国堂. CRTSⅡ型板式无砟轨道结构早期温度场特征研究[J]. 中国铁道科学, 2014, 35(1): 1-6. doi: 10.3969/j.issn.1001-4632.2014.01.01

    LIU Yu, CHEN Pan, ZHAO Guo-tang. Study on the characteristics of early temperature field of CRTS Ⅱ slab ballastless track structure[J]. China Railway Science, 2014, 35(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.01.01
    [8] XIAO Hong, ZHANG Yan-rong, LI Qi-hang, et al. Analysis of the initiation and propagation of fatigue cracks in the CRTS Ⅱ slab track inter-layer using FE-SAFE and XFEM[J]. Journal of Rail Rapid Transit, 2018, 6(9): 1-13.
    [9] CAO Shi-hao, YANG Rong-shan, SU Cheng-guang, et al. Damage mechanism of slab track under the coupling effects of train load and water[J]. Engineering Fracture Mechanics, 2016, 163: 160-175. doi: 10.1016/j.engfracmech.2016.07.005
    [10] CAI Xiao-pei, LUO Bi-cheng, ZHONG Yang-long, et al. Arching mechanism of the slab joints in CRTSⅡslab track under high temperature conditions[J]. Engineering Failure Analysis, 2019, 98: 95-108. doi: 10.1016/j.engfailanal.2019.01.076
    [11] 谭社会. 高温条件下CRTSⅡ型板式无砟轨道变形整治措施研究[J]. 铁道建筑, 2016(5): 23-27. doi: 10.3969/j.issn.1003-1995.2016.05.06

    TAN She-hui. Study on deformation treatment measures for CRTS Ⅱ slab-type ballastless track in high temperature condition[J]. Railway Engineering, 2016(5): 23-27. (in Chinese) doi: 10.3969/j.issn.1003-1995.2016.05.06
    [12] 许玉德, 缪雯颖, 严道斌, 等. 离缝修复条件下无砟轨道板温度翘曲变形特征[J]. 同济大学学报(自然科学版), 2021, 49(3): 400-410. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103012.htm

    XU Yu-de, MIAO Wen-ying, YAN Dao-bin, et al. Warping features of ballastless track-slab under debonding-repaired condition[J]. Journal of Tongji University (Natural Science), 2021, 49(3): 400-410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103012.htm
    [13] 易忠来, 李化建, 温浩, 等. CRTSⅡ型板式无砟轨道充填层离缝修复技术研究[J]. 铁道建筑, 2015, 55(1): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201501024.htm

    YI Zhong-lai, LI Hua-jian, WEN Hao, et al. Study on remedy technology of open joint of filling layer for CRTS Ⅱ slab-type ballastless track[J]. Railway Engineering, 2015, 55(1): 102-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201501024.htm
    [14] FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. Experimental investigation on shear steel bars in CRTS Ⅱ slab ballastless track under low-cyclic reciprocating load[J]. Construction and Building Materials, 2020, 255: 119425. doi: 10.1016/j.conbuildmat.2020.119425
    [15] 任西冲. CRTSⅡ型板式无砟轨道板端上拱病害机理及整治研究[D]. 北京: 北京交通大学, 2019.

    REN Xi-chong. Research on upwarp of CRTS Ⅱ ballastless track slab end and its renovation[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [16] 赵虎, 李秋义, 黄传岳, 等. 高速铁路CRTS Ⅱ型板式无砟轨道预防性加固方案及应用[J]. 铁道建筑, 2021, 61(4): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202104026.htm

    ZHAO Hu, LI Qiu-yi, HUANG Chuan-yue, et al. Preventive reinforcement scheme and application of CRTS Ⅱ slab ballastless track for high speed railway[J]. Railway Engineering, 2021, 61(4): 116-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202104026.htm
    [17] 张杰. CRTSⅡ型板式无砟轨道胀板机理及整治措施深化研究[J]. 铁道建筑, 2018, 58(7): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201807026.htm

    ZHANG Jie. Research on slab expansion mechanism and treatment measures for CRTSⅡ slab ballastless track[J]. Railway Engineering, 2018, 58(7): 104-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201807026.htm
    [18] LI Yang, CHEN Jin-jie, WANG Jian-xi, et al. Interfacial failure and arching of the CRTS Ⅱ slab track reinforced by post-installed reinforcement bars due to thermal effects[J]. Engineering Failure Analysis, 2021, 125: 105405. doi: 10.1016/j.engfailanal.2021.105405
    [19] 钟阳龙, 高亮, 侯博文. 不同植筋方案纵连板轨道砂浆层抗剪性能分析[J]. 西南交通大学学报, 2018, 53(1): 38-45, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801005.htm

    ZHONG Yang-long, GAO Liang, HOU Bo-wen. Shear behavior of mortar layer in continuous slab track with different arrangement schemes of embedded steel bars[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 38-45, 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801005.htm
    [20] 黄自鹏, 何越磊, 路宏遥, 等. CRTSⅡ型板式无砟轨道植筋修复方案优化研究[J]. 铁道标准设计, 2022, 66(10): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202210009.htm

    HUANG Zi-peng, HE Yue-lei, LU Hong-yao, et al. Research on CRTSⅡ slab ballastless track planting bar restoration scheme optimization[J]. Railway Standard Design, 2022, 66(10): 52-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202210009.htm
    [21] 袁博, 肖杰灵, 陈醉, 等. 高速铁路纵连式轨道板空间位移作用下锚固销钉受力特性分析[J]. 铁道标准设计, 2021, 65(9): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202109004.htm

    YUAN Bo, XIAO Jie-ling, CHEN Zui, et al. Analysis of mechanical characteristics of the anchor pin under spatial displacement of longitudinal connected track slab of high-speed railway[J]. Railway Standard Design, 2021, 65(9): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202109004.htm
    [22] XU Yu-de, YAN Dao-bin, ZHU Wen-jun, et al. Study on the mechanical performance and interface damage of CRTS Ⅱ slab track with debonding repairment[J]. Construction and Building Materials, 2020, 257: 119600.
    [23] ZHU Sheng-yang, CAI Cheng-biao. Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads[J]. International Journal of Non-Linear Mechanics, 2014, 58: 222-232.
    [24] LI Yang, LI Hai-yan, ZHANG Guang-peng, et al. Nonlinear responses of longitudinally coupled slab tracks exposed to extreme heat waves[J]. Engineering Structures, 2023, 281: 115789.
    [25] RAMAMURTHI M, LEE J S, YANG S H, et al. Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(10): 1755-1765.
    [26] 李杨, 陈进杰, 石现峰, 等. 高温荷载下植筋加固CRTSⅡ型板式无砟轨道变形及损伤规律[J]. 中国铁道科学, 2022, 43(2): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202202003.htm

    LI Yang, CHEN Jin-jie, SHI Xian-feng, et al. Deformation and damage laws of CRTS Ⅱ slab ballastless track reinforced by post-installed rebar subjected to high temperature load[J]. China Railway Science, 2022, 43(2): 19-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202202003.htm
    [27] LI Yang, CHEN Jin-jie, JIANG Zi-qing, et al. Thermal performance of the solar reflective fluorocarbon coating and its effects on the mechanical behavior of the ballastless track[J]. Construction and Building Materials, 2021, 291: 123260.
    [28] 黄志斌. 桥上CRTSⅡ型板式轨道结构竖向温度场预估模型[J]. 铁道科学与工程学报, 2017, 14(5): 899-906. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201705003.htm

    HUANG Zhi-bin. The prediction model of vertical temperature field for CRTS Ⅱ slab track on bridge[J]. Journal of Railway Science and Engineering, 2017, 14(5): 899-906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201705003.htm
    [29] CHOUBANE B, TIA M. Nonlinear temperature gradient effect on maximum warping stresses in rigid pavements[J]. Transportation Research Record, 1992(1370): 11-19.
    [30] 康维新. 反射隔热涂料在无砟轨道上的应用研究[D]. 成都: 西南交通大学, 2018.

    KANG Wei-xin. Applicability analysis of the solar heat reflective and insulation coating used in the ballastless track[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [31] LI Yang, CHEN Jin-jie, WANG Jian-xi, et al. Analysis of damage of joints in CRTSⅡ slab track under temperature and vehicle loads[J]. KSCE Journal of Civil Engineering, 2020, 24(4): 1209-1218.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  232
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回