留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市轨道车轮结构振动-声辐射一体化优化方法

文永蓬 刘跃杰 周月 圣小珍

文永蓬, 刘跃杰, 周月, 圣小珍. 城市轨道车轮结构振动-声辐射一体化优化方法[J]. 交通运输工程学报, 2023, 23(3): 137-147. doi: 10.19818/j.cnki.1671-1637.2023.03.010
引用本文: 文永蓬, 刘跃杰, 周月, 圣小珍. 城市轨道车轮结构振动-声辐射一体化优化方法[J]. 交通运输工程学报, 2023, 23(3): 137-147. doi: 10.19818/j.cnki.1671-1637.2023.03.010
WEN Yong-peng, LIU Yue-jie, ZHOU Yue, SHENG Xiao-zhen. Integrated optimization method of vibration and sound radiation for urban rail wheel structure[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 137-147. doi: 10.19818/j.cnki.1671-1637.2023.03.010
Citation: WEN Yong-peng, LIU Yue-jie, ZHOU Yue, SHENG Xiao-zhen. Integrated optimization method of vibration and sound radiation for urban rail wheel structure[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 137-147. doi: 10.19818/j.cnki.1671-1637.2023.03.010

城市轨道车轮结构振动-声辐射一体化优化方法

doi: 10.19818/j.cnki.1671-1637.2023.03.010
基金项目: 

国家自然科学基金项目 52272352

西南交通大学轨道交通运载系统全国重点实验室开放课题 TPL2103

上海市轨道交通结构耐久与系统安全重点实验室开放基金 R202204

上海市自然科学基金项目 15ZR1419200

详细信息
    作者简介:

    文永蓬(1979-),男,江西永新人,上海工程技术大学副教授,工学博士,从事城市轨道车辆系统动力学、轮轨系统智能运维研究

  • 中图分类号: U270.2

Integrated optimization method of vibration and sound radiation for urban rail wheel structure

Funds: 

National Natural Science Foundation of China 52272352

Open Project Program of State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University TPL2103

Open Project of Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety R202204

Natural Science Foundation of Shanghai 15ZR1419200

More Information
    Author Bio:

    WEN Yong-peng(1979-), male, associate professor, PhD, yp_wen@163.com

  • 摘要: 为了降低城市轨道车辆的车轮结构噪声,以服役的双S型辐板车轮为研究对象,建立了考虑振动与声辐射融合的城市轨道车轮结构噪声优化模型,获得了一种自上而下呈不等厚特征辐板的新型降噪车轮廓形,提出了以轨道车轮辐板区域为设计域的车轮结构振动-声辐射一体化优化方法;将整个辐板区域确定为设计域,分别设定编码规则、选择规则、交叉规则和变异规则,使振动-声辐射优化目标函数逐渐收敛,从而进化为较优的降噪车轮廓形,实现轨道车轮振动-声辐射结构优化设计;利用成熟有限元工具获得优化车轮的静强度、疲劳强度和振动声辐射性能,进一步验证双S型辐板车轮新型结构噪声优化结果的有效性和可靠性。研究结果表明:车轮结构振动-声辐射一体化优化方法适用于降噪车轮的结构廓形优化,优化后车轮峰值声功率级较原双S型辐板车轮降低了4.26 dB(A),在0~5 000 Hz频段范围内声功率级峰值处降噪效果明显;从辐板结构特征上看,双S型辐板车轮的辐板由优化前的基本等厚辐板进化为不等厚辐板,车轮辐板的不等厚特征有利于降低车轮的声辐射水平,从车轮的经济和降噪性能兼顾的角度,建议采用不等厚辐板车轮廓形作为轨道车轮降噪模型。

     

  • 图  1  双S型辐板车轮设计域和非设计域

    Figure  1.  Design domain and non-design domain of double S-shaped spoke wheel

    图  2  车轮振动-声辐射关键点选取

    Figure  2.  Selection of key points of wheel vibration and sound radiation

    图  3  个体车轮的二进制编码串与设计变量关系

    Figure  3.  Relationship between binary code string and design variables of individual wheel

    图  4  选择算子

    Figure  4.  Selection operator

    图  5  交叉算子

    Figure  5.  Crossover operator

    图  6  变异算子

    Figure  6.  Mutation operator

    图  7  城市轨道双S型辐板车轮结构噪声优化流程

    Figure  7.  Optimization process of structural noise of urban rail double S-shaped spoke wheel

    图  8  优化过程中各代车轮目标函数P变化

    Figure  8.  Change of objective function P of each generation of wheels in optimization process

    图  9  考虑体积的各代车轮目标函数Pv变化

    Figure  9.  Change of objective function Pv of each generation of wheels considering the volume

    图  10  优化过程中各代最优车轮截面

    Figure  10.  Optimal wheel sections of each generation in optimization process

    图  11  优化前后车轮廓形对比

    Figure  11.  Comparison of wheel shapes before and after optimization

    图  12  优化后车轮结构应力云图

    Figure  12.  Stress cloud chart of wheel structure after optimization

    图  13  优化车轮Goodman疲劳极限

    Figure  13.  Goodman fatigue limit of optimized wheel

    图  14  优化模型的有限元模型

    Figure  14.  Finite element model of optimization model

    图  15  轮轨激励位置选取

    Figure  15.  Selection of wheel-rail excitation position

    图  16  Enclosure空气域建立

    Figure  16.  Establishment of enclosure air domain

    图  17  车轮辐射声功率级

    Figure  17.  Wheel radiated sound power level

    表  1  初始种群

    Table  1.   Initial populations

    个体基因型 d/mm r1/mm r2/mm P Pv F
    1101 001 110 5 56 38 1.65×106 1.11 0.6
    1111 001 010 7 56 34 1.80×106 1.00 0.0
    0011 010 111 -5 57 39 1.71×106 1.06 0.4
    1110 111 000 6 62 32 1.62×106 1.05 0.8
    1111 101 100 7 60 36 1.72×106 1.03 0.3
    0000 000 000 -8 55 32 1.61×106 1.09 0.9
    0111 100 111 -1 59 39 1.58×106 1.13 1.0
    1010 010 100 2 57 36 1.64×106 1.09 0.7
    下载: 导出CSV

    表  2  第15代种群

    Table  2.   15th generation population

    个体基因型 d/mm r1/mm r2/mm P Pv F
    0000 110 000 -8 61 32 1.48×106 1.14 1.0
    下载: 导出CSV

    表  3  优化前后车轮数据对比

    Table  3.   Comparison of wheel data before and after optimization

    模型 P Pv V/mm3 A/m2
    原双S型辐板车轮 1.61×106 1.104 4 36 815 280 0.604 86
    优化后车轮 1.48×106 1.141 5 38 702 250 0.635 91
    下载: 导出CSV
  • [1] 圣小珍, 成功, THOMPSON D J, 等. 轮轨噪声预测模型研究进展[J]. 交通运输工程学报, 2021, 21(3): 20-38. doi: 10.19818/j.cnki.1671-1637.2021.03.002

    SHENG Xiao-zhen, CHENG Gong, THOMPSON D J, et al. Research progress on wheel-rail noise prediction models[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 20-38. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.002
    [2] ZHOU Xin, HAN Jian, ZHAO Yue, et al. Characteristics of vibration and sound radiation of metro resilient wheel[J]. Chinese Journal of Mechanical Engineering, 2019, 32: 67. doi: 10.1186/s10033-019-0383-1
    [3] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htm

    WEN Yong-peng, ZHENG Xiao-ming, WU Ai-zhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htm
    [4] 文永蓬, 郑晓明, 尚慧琳, 等. 考虑不同辐板的城市轨道车轮热力耦合特性研究[J]. 机械强度, 2018, 40(1): 165-170. doi: 10.16579/j.issn.1001.9669.2018.01.028

    WEN Yong-peng, ZHENG Xiao-ming, SHANG Hui-lin, et al. Study on the thermal-mechanical coupling for different plate urban railway vehicle wheels[J]. Journal of Mechanical Strength, 2018, 40(1): 165-170. (in Chinese) doi: 10.16579/j.issn.1001.9669.2018.01.028
    [5] 韩健, 肖新标, 王瑞乾, 等. 迷宫式阻尼环装置对车轮的减振降噪效果[J]. 噪声与振动控制, 2015, 35(1): 83-88. doi: 10.3969/j.issn.1006-1355.2015.01.019

    HAN Jian, XIAO Xin-biao, WANG Rui-qian, et al. Effect of labyrinth ring damping device on vibration and noise reduction of railway wheels[J]. Noise and Vibration Control, 2015, 35(1): 83-88. (in Chinese) doi: 10.3969/j.issn.1006-1355.2015.01.019
    [6] 刘玉霞, 周信, 刘晓龙, 等. 双嵌入式环形阻尼车轮声振特性[J]. 噪声与振动控制, 2015, 35(3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503008.htm

    LIU Yu-xia, ZHOU Xin, LIU Xiao-long, et al. Vibration and acoustic characteristics of the wheels with doubly embedded damping rings[J]. Noise and Vibration Control, 2015, 35(3): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503008.htm
    [7] 刘玉霞, 韩健, 周信, 等. 弹性车轮减振降噪特性分析[J]. 铁道学报, 2015, 37(6): 48-53. doi: 10.3969/j.issn.1001-8360.2015.06.007

    LIU Yu-xia, HAN Jian, ZHOU Xin, et al. Analysis of vibration and noise reduction characteristics of resilient wheel[J]. Journal of the China Railway Society, 2015, 37(6): 48-53. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.007
    [8] 钱鼎玮, 杨新文, 刘晓波, 等. 轨道车辆车轮辐板阻尼层对其降噪效果的影响分析[J]. 动力学与控制学报, 2020, 18(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK202003007.htm

    QIAN Ding-wei, YANG Xin-wen, LIU Xiao-bo, et al. Effect of web damping layer on noise reduction of rail vehicle wheel[J]. Journal of Dynamics and Control, 2020, 18(3): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK202003007.htm
    [9] 李牧皛, 王瑞乾, 温泽峰, 等. 喷涂式阻尼车轮振动声辐射特性分析[J]. 噪声与振动控制, 2014, 34(4): 30-34, 38. doi: 10.3969/j.issn.1006-1335.2014.04.007

    LI Mu-xiao, WANG Rui-qian, WEN Ze-feng, et al. Analysis of vibration and sound radiation characteristics of sprayed damping wheels[J]. Noise and Vibration Control, 2014, 34(4): 30-34, 38. (in Chinese) doi: 10.3969/j.issn.1006-1335.2014.04.007
    [10] SUAREZ B, CHOVER J A, RODRIGUEZ P, et al. Effectiveness of resilient wheels in reducing noise and vibrations[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(6): 545-565. doi: 10.1177/0954409711404104
    [11] 刘林芽, 张斌, 邵文杰, 等. S型辐板车轮声辐射优化设计[J]. 交通运输工程学报, 2013, 13(5): 54-60. http://transport.chd.edu.cn/article/id/201305008

    LIU Lin-ya, ZHANG Bin, SHAO Wen-jie, et al. Optimization design of acoustic radiation for S form web plate wheel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 54-60. (in Chinese) http://transport.chd.edu.cn/article/id/201305008
    [12] 王志华. 声学优化车轮设计理论研究[D]. 北京: 北京交通大学, 2012.

    WANG Zhi-hua. The research on the theory of optimal wheel design with acoustic[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [13] GARCIA-ANDRÉS X, GUTIÉRREZ-GIL J, MARTÍNEZ-CASAS J, et al. Wheel shape optimization approaches to reduce railway rolling noise[J]. Structural and Multidisciplinary Optimization, 2020, 62: 2555-2570. doi: 10.1007/s00158-020-02700-6
    [14] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202224016.htm

    QI Ya-yun, DAI Huan-yun, GAN Feng. Optimization of wheel profiles for high-speed trains[J]. Journal of Mechanical Engineering, 2022, 58(24): 188-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202224016.htm
    [15] YAMASHITA H, FELDMEIER C, YAMAZAKI Y, et al. Wheel profile optimization procedure to minimize flange wear considering profile wear evolution[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(6): 672-683.
    [16] YE Y G, QI Y Y, SHI D C, et al. Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive[J]. Railway Engineering Science, 2020, 28(2): 160-183.
    [17] YE Y G, VUITTON J, SUN Y, et al. Railway wheel profile fine-tuning system for profile recommendation[J]. Railway Engineering Science, 2021, 29(1): 74-93.
    [18] ANDRÉS V T, MARTÍNEZ-CASAS J, DENIA F D, et al. Influence study of rail geometry and track properties on railway rolling noise[J]. Journal of Sound and Vibration, 2022, 525: 116701.
    [19] ANDRÉS V T, MARTÍNEZ-CASAS J, DENIA F D, et al. A model of a rotating railway wheel for the prediction of sound radiation[J]. Journal of Sound and Vibration, 2023, 553: 117667.
    [20] 郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. doi: 10.19818/j.cnki.1671-1637.2019.05.009

    ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, et al. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.05.009
    [21] 文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16(5): 30-41. doi: 10.19818/j.cnki.1671-1637.2016.05.004

    WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.05.004
    [22] 刘跃杰, 文永蓬, 周月, 等. 考虑磨耗不等厚辐板的轨道车轮振动声辐射特性[J]. 机械科学与技术, https://doi.org/10.13433/j.cnki.1003-8728.20220115.

    LIU Yue-jie, WEN Yong-peng, ZHOU Yue, et al. Characteristics of vibration and sound radiation for railway wheels considering wear and unequal thickness web plate[J]. Mechanical Science and Technology for Aerospace Engineering, https://doi.org/10.13433/j.cnki.1003-8728.20220115. (in Chinese)
    [23] 文永蓬, 尚慧琳, 董其炜, 等. 城市轨道车辆车轮轮缘磨耗分析[J]. 科技导报, 2013, 31(26): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201326020.htm

    WEN Yong-peng, SHANG Hui-lin, DONG Qi-wei, et al. Wear of wheel flange of urban rail vehicle[J]. Science and Technology Review, 2013, 31(26): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201326020.htm
    [24] 文永蓬, 周伟浩, 徐小峻, 等. 考虑热力耦合的轨道车轮辐板参数优化研究[J]. 铁道科学与工程学报, 2016, 13(10): 2042-2050. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201610023.htm

    WEN Yong-peng, ZHOU Wei-hao, XU Xiao-jun, et al. Study on parameter optimization for the rail wheel considering thermal-mechanical coupling[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2042-2050. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201610023.htm
    [25] MICHAU M, BERRY A, HERZOG P, et al. Bending nearfield compensation in the context of vibroacoustic active control[J]. Mechanics and Industry, 2014, 15(6): 551-555.
    [26] EFTHIMEROS G A, PHOTEINOS D I, DIAMANTIS Z G, et al. Vibration/noise optimization of a FEM railway wheel model[J]. Engineering Computations, 2002, 19(8): 922-931.
    [27] LIN Li-zong, WU Meng-ren, DING Zheng-yin, et al. Research on sound radiation characteristics of the high-speed train wheel[J]. Journal of Vibroengineering, 2016, 18(1): 417-430.
    [28] SEDDAOUI A, SAAJ C M. Collision-free optimal trajectory generation for a space robot using genetic algorithm[J]. Acta Astronautica, 2021, 179: 311-321.
    [29] 王悦东, 张佳宇. 基于改进的Goodman曲线的车轮疲劳强度评估方法研究[J]. 铁道科学与工程学报, 2017, 14(4): 827-832. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201704022.htm

    WANG Yue-dong, ZHANG Jia-yu. Assessment method for fatigue strength of wheel based on improved Goodman curve[J]. Journal of Railway Science and Engineering, 2017, 14(4): 827-832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201704022.htm
    [30] 韩健, 肖新标, 金学松, 等. 城市轨道交通车轮振动声辐射特性[J]. 机械工程学报, 2012, 48(10): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201210019.htm

    HAN Jian, XIAO Xin-biao, JIN Xue-song, et al. Sound radiation characteristics of wheels used in urban rail traffic[J]. Journal of Mechanical Engineering, 2012, 48(10): 115-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201210019.htm
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  108
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回