Integrated optimization method of vibration and sound radiation for urban rail wheel structure
-
摘要: 为了降低城市轨道车辆的车轮结构噪声,以服役的双S型辐板车轮为研究对象,建立了考虑振动与声辐射融合的城市轨道车轮结构噪声优化模型,获得了一种自上而下呈不等厚特征辐板的新型降噪车轮廓形,提出了以轨道车轮辐板区域为设计域的车轮结构振动-声辐射一体化优化方法;将整个辐板区域确定为设计域,分别设定编码规则、选择规则、交叉规则和变异规则,使振动-声辐射优化目标函数逐渐收敛,从而进化为较优的降噪车轮廓形,实现轨道车轮振动-声辐射结构优化设计;利用成熟有限元工具获得优化车轮的静强度、疲劳强度和振动声辐射性能,进一步验证双S型辐板车轮新型结构噪声优化结果的有效性和可靠性。研究结果表明:车轮结构振动-声辐射一体化优化方法适用于降噪车轮的结构廓形优化,优化后车轮峰值声功率级较原双S型辐板车轮降低了4.26 dB(A),在0~5 000 Hz频段范围内声功率级峰值处降噪效果明显;从辐板结构特征上看,双S型辐板车轮的辐板由优化前的基本等厚辐板进化为不等厚辐板,车轮辐板的不等厚特征有利于降低车轮的声辐射水平,从车轮的经济和降噪性能兼顾的角度,建议采用不等厚辐板车轮廓形作为轨道车轮降噪模型。Abstract: To reduce the wheel structure noise of urban rail vehicles, the double S-shaped spoke wheel in service was taken as the research object to build an optimization model of urban rail wheel structure noise considering the integration of vibration and sound radiation. A new noise reduction wheel profile with unequal thickness spokes from top to bottom was obtained, and an integrated optimization method of wheel structure vibration and sound radiation which took the rail wheel spoke area as the design area was proposed. The entire wheel spoke area was identified as the design domain, and the coding rules, selection rules, crossover rules, and variation rules were identified respectively. The optimization objective function of vibration and sound radiation converged gradually to evolve into a better noise reduction wheel profile. The vibration and sound radiation optimization design of the wheel was realized. The static strength, fatigue strength, and vibration sound radiation performance of the optimized wheel were calculated by the mature finite element tool, which further verified the effectiveness and reliability of the new structure noise optimization results of the double S-shaped spoke wheel. Research results show that the integrated optimization method of wheel structure vibration and sound radiation is suitable for the structural profile optimization of noise reduction wheels. The peak sound power level of the optimized wheel is 4.26 dB(A) lower than that of the original double S-shaped spoke wheel, and the noise reduction effect is obvious at sound power level peaks in the frequency range of 0-5 000 Hz. From the perspective of the structural characteristics of the spokes, the spokes of the optimized double S-shaped spoke wheel evolve from the basic equal-thickness spokes to unequal-thickness ones. The unequal-thickness characteristics of the wheel spokes are conducive to reducing the sound radiation of the wheel. Therefore, considering the economic and noise reduction performance of the wheel, it is suggested to take the profile wheel with unequal-thickness spokes as the noise reduction model of the wheel.
-
Key words:
- urban rail vehicle /
- wheel /
- noise /
- structure optimization /
- sound radiation /
- wheel profile
-
表 1 初始种群
Table 1. Initial populations
个体基因型 d/mm r1/mm r2/mm P Pv F 1101 001 110 5 56 38 1.65×106 1.11 0.6 1111 001 010 7 56 34 1.80×106 1.00 0.0 0011 010 111 -5 57 39 1.71×106 1.06 0.4 1110 111 000 6 62 32 1.62×106 1.05 0.8 1111 101 100 7 60 36 1.72×106 1.03 0.3 0000 000 000 -8 55 32 1.61×106 1.09 0.9 0111 100 111 -1 59 39 1.58×106 1.13 1.0 1010 010 100 2 57 36 1.64×106 1.09 0.7 表 2 第15代种群
Table 2. 15th generation population
个体基因型 d/mm r1/mm r2/mm P Pv F 0000 110 000 -8 61 32 1.48×106 1.14 1.0 表 3 优化前后车轮数据对比
Table 3. Comparison of wheel data before and after optimization
模型 P Pv V/mm3 A/m2 原双S型辐板车轮 1.61×106 1.104 4 36 815 280 0.604 86 优化后车轮 1.48×106 1.141 5 38 702 250 0.635 91 -
[1] 圣小珍, 成功, THOMPSON D J, 等. 轮轨噪声预测模型研究进展[J]. 交通运输工程学报, 2021, 21(3): 20-38. doi: 10.19818/j.cnki.1671-1637.2021.03.002SHENG Xiao-zhen, CHENG Gong, THOMPSON D J, et al. Research progress on wheel-rail noise prediction models[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 20-38. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.002 [2] ZHOU Xin, HAN Jian, ZHAO Yue, et al. Characteristics of vibration and sound radiation of metro resilient wheel[J]. Chinese Journal of Mechanical Engineering, 2019, 32: 67. doi: 10.1186/s10033-019-0383-1 [3] 文永蓬, 郑晓明, 吴爱中, 等. 基于BESO算法的城市轨道车轮拓扑优化[J]. 机械工程学报, 2020, 56(10): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htmWEN Yong-peng, ZHENG Xiao-ming, WU Ai-zhong, et al. Topology optimization of urban rail wheel based on BESO algorithm[J]. Journal of Mechanical Engineering, 2020, 56(10): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010024.htm [4] 文永蓬, 郑晓明, 尚慧琳, 等. 考虑不同辐板的城市轨道车轮热力耦合特性研究[J]. 机械强度, 2018, 40(1): 165-170. doi: 10.16579/j.issn.1001.9669.2018.01.028WEN Yong-peng, ZHENG Xiao-ming, SHANG Hui-lin, et al. Study on the thermal-mechanical coupling for different plate urban railway vehicle wheels[J]. Journal of Mechanical Strength, 2018, 40(1): 165-170. (in Chinese) doi: 10.16579/j.issn.1001.9669.2018.01.028 [5] 韩健, 肖新标, 王瑞乾, 等. 迷宫式阻尼环装置对车轮的减振降噪效果[J]. 噪声与振动控制, 2015, 35(1): 83-88. doi: 10.3969/j.issn.1006-1355.2015.01.019HAN Jian, XIAO Xin-biao, WANG Rui-qian, et al. Effect of labyrinth ring damping device on vibration and noise reduction of railway wheels[J]. Noise and Vibration Control, 2015, 35(1): 83-88. (in Chinese) doi: 10.3969/j.issn.1006-1355.2015.01.019 [6] 刘玉霞, 周信, 刘晓龙, 等. 双嵌入式环形阻尼车轮声振特性[J]. 噪声与振动控制, 2015, 35(3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503008.htmLIU Yu-xia, ZHOU Xin, LIU Xiao-long, et al. Vibration and acoustic characteristics of the wheels with doubly embedded damping rings[J]. Noise and Vibration Control, 2015, 35(3): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503008.htm [7] 刘玉霞, 韩健, 周信, 等. 弹性车轮减振降噪特性分析[J]. 铁道学报, 2015, 37(6): 48-53. doi: 10.3969/j.issn.1001-8360.2015.06.007LIU Yu-xia, HAN Jian, ZHOU Xin, et al. Analysis of vibration and noise reduction characteristics of resilient wheel[J]. Journal of the China Railway Society, 2015, 37(6): 48-53. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.007 [8] 钱鼎玮, 杨新文, 刘晓波, 等. 轨道车辆车轮辐板阻尼层对其降噪效果的影响分析[J]. 动力学与控制学报, 2020, 18(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK202003007.htmQIAN Ding-wei, YANG Xin-wen, LIU Xiao-bo, et al. Effect of web damping layer on noise reduction of rail vehicle wheel[J]. Journal of Dynamics and Control, 2020, 18(3): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK202003007.htm [9] 李牧皛, 王瑞乾, 温泽峰, 等. 喷涂式阻尼车轮振动声辐射特性分析[J]. 噪声与振动控制, 2014, 34(4): 30-34, 38. doi: 10.3969/j.issn.1006-1335.2014.04.007LI Mu-xiao, WANG Rui-qian, WEN Ze-feng, et al. Analysis of vibration and sound radiation characteristics of sprayed damping wheels[J]. Noise and Vibration Control, 2014, 34(4): 30-34, 38. (in Chinese) doi: 10.3969/j.issn.1006-1335.2014.04.007 [10] SUAREZ B, CHOVER J A, RODRIGUEZ P, et al. Effectiveness of resilient wheels in reducing noise and vibrations[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(6): 545-565. doi: 10.1177/0954409711404104 [11] 刘林芽, 张斌, 邵文杰, 等. S型辐板车轮声辐射优化设计[J]. 交通运输工程学报, 2013, 13(5): 54-60. http://transport.chd.edu.cn/article/id/201305008LIU Lin-ya, ZHANG Bin, SHAO Wen-jie, et al. Optimization design of acoustic radiation for S form web plate wheel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 54-60. (in Chinese) http://transport.chd.edu.cn/article/id/201305008 [12] 王志华. 声学优化车轮设计理论研究[D]. 北京: 北京交通大学, 2012.WANG Zhi-hua. The research on the theory of optimal wheel design with acoustic[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese) [13] GARCIA-ANDRÉS X, GUTIÉRREZ-GIL J, MARTÍNEZ-CASAS J, et al. Wheel shape optimization approaches to reduce railway rolling noise[J]. Structural and Multidisciplinary Optimization, 2020, 62: 2555-2570. doi: 10.1007/s00158-020-02700-6 [14] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202224016.htmQI Ya-yun, DAI Huan-yun, GAN Feng. Optimization of wheel profiles for high-speed trains[J]. Journal of Mechanical Engineering, 2022, 58(24): 188-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202224016.htm [15] YAMASHITA H, FELDMEIER C, YAMAZAKI Y, et al. Wheel profile optimization procedure to minimize flange wear considering profile wear evolution[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(6): 672-683. [16] YE Y G, QI Y Y, SHI D C, et al. Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive[J]. Railway Engineering Science, 2020, 28(2): 160-183. [17] YE Y G, VUITTON J, SUN Y, et al. Railway wheel profile fine-tuning system for profile recommendation[J]. Railway Engineering Science, 2021, 29(1): 74-93. [18] ANDRÉS V T, MARTÍNEZ-CASAS J, DENIA F D, et al. Influence study of rail geometry and track properties on railway rolling noise[J]. Journal of Sound and Vibration, 2022, 525: 116701. [19] ANDRÉS V T, MARTÍNEZ-CASAS J, DENIA F D, et al. A model of a rotating railway wheel for the prediction of sound radiation[J]. Journal of Sound and Vibration, 2023, 553: 117667. [20] 郑晓明, 文永蓬, 尚慧琳, 等. 考虑UIC强度准则的轨道车轮辐板渐进结构拓扑优化方法[J]. 交通运输工程学报, 2019, 19(5): 84-95. doi: 10.19818/j.cnki.1671-1637.2019.05.009ZHENG Xiao-ming, WEN Yong-peng, SHANG Hui-lin, et al. Evolutionary structure topology optimization method of rail wheel web plate considering UIC strength criterion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 84-95. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.05.009 [21] 文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16(5): 30-41. doi: 10.19818/j.cnki.1671-1637.2016.05.004WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.05.004 [22] 刘跃杰, 文永蓬, 周月, 等. 考虑磨耗不等厚辐板的轨道车轮振动声辐射特性[J]. 机械科学与技术, https://doi.org/10.13433/j.cnki.1003-8728.20220115.LIU Yue-jie, WEN Yong-peng, ZHOU Yue, et al. Characteristics of vibration and sound radiation for railway wheels considering wear and unequal thickness web plate[J]. Mechanical Science and Technology for Aerospace Engineering, https://doi.org/10.13433/j.cnki.1003-8728.20220115. (in Chinese) [23] 文永蓬, 尚慧琳, 董其炜, 等. 城市轨道车辆车轮轮缘磨耗分析[J]. 科技导报, 2013, 31(26): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201326020.htmWEN Yong-peng, SHANG Hui-lin, DONG Qi-wei, et al. Wear of wheel flange of urban rail vehicle[J]. Science and Technology Review, 2013, 31(26): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201326020.htm [24] 文永蓬, 周伟浩, 徐小峻, 等. 考虑热力耦合的轨道车轮辐板参数优化研究[J]. 铁道科学与工程学报, 2016, 13(10): 2042-2050. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201610023.htmWEN Yong-peng, ZHOU Wei-hao, XU Xiao-jun, et al. Study on parameter optimization for the rail wheel considering thermal-mechanical coupling[J]. Journal of Railway Science and Engineering, 2016, 13(10): 2042-2050. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201610023.htm [25] MICHAU M, BERRY A, HERZOG P, et al. Bending nearfield compensation in the context of vibroacoustic active control[J]. Mechanics and Industry, 2014, 15(6): 551-555. [26] EFTHIMEROS G A, PHOTEINOS D I, DIAMANTIS Z G, et al. Vibration/noise optimization of a FEM railway wheel model[J]. Engineering Computations, 2002, 19(8): 922-931. [27] LIN Li-zong, WU Meng-ren, DING Zheng-yin, et al. Research on sound radiation characteristics of the high-speed train wheel[J]. Journal of Vibroengineering, 2016, 18(1): 417-430. [28] SEDDAOUI A, SAAJ C M. Collision-free optimal trajectory generation for a space robot using genetic algorithm[J]. Acta Astronautica, 2021, 179: 311-321. [29] 王悦东, 张佳宇. 基于改进的Goodman曲线的车轮疲劳强度评估方法研究[J]. 铁道科学与工程学报, 2017, 14(4): 827-832. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201704022.htmWANG Yue-dong, ZHANG Jia-yu. Assessment method for fatigue strength of wheel based on improved Goodman curve[J]. Journal of Railway Science and Engineering, 2017, 14(4): 827-832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201704022.htm [30] 韩健, 肖新标, 金学松, 等. 城市轨道交通车轮振动声辐射特性[J]. 机械工程学报, 2012, 48(10): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201210019.htmHAN Jian, XIAO Xin-biao, JIN Xue-song, et al. Sound radiation characteristics of wheels used in urban rail traffic[J]. Journal of Mechanical Engineering, 2012, 48(10): 115-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201210019.htm