留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升力翼对高速列车列车风与尾流特性的影响

熊小慧 汪欣然 张洁 王凯文 程凡 罗长骏

熊小慧, 汪欣然, 张洁, 王凯文, 程凡, 罗长骏. 升力翼对高速列车列车风与尾流特性的影响[J]. 交通运输工程学报, 2023, 23(3): 148-161. doi: 10.19818/j.cnki.1671-1637.2023.03.011
引用本文: 熊小慧, 汪欣然, 张洁, 王凯文, 程凡, 罗长骏. 升力翼对高速列车列车风与尾流特性的影响[J]. 交通运输工程学报, 2023, 23(3): 148-161. doi: 10.19818/j.cnki.1671-1637.2023.03.011
XIONG Xiao-hui, WANG Xin-ran, ZHANG Jie, WANG Kai-wen, CHENG Fan, LUO Zhang-jun. Effect of lift airfoils on characteristics of slipstream and wake flow of high-speed trains[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 148-161. doi: 10.19818/j.cnki.1671-1637.2023.03.011
Citation: XIONG Xiao-hui, WANG Xin-ran, ZHANG Jie, WANG Kai-wen, CHENG Fan, LUO Zhang-jun. Effect of lift airfoils on characteristics of slipstream and wake flow of high-speed trains[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 148-161. doi: 10.19818/j.cnki.1671-1637.2023.03.011

升力翼对高速列车列车风与尾流特性的影响

doi: 10.19818/j.cnki.1671-1637.2023.03.011
基金项目: 

国家重点研发计划 2020YFA0710903

详细信息
    作者简介:

    熊小慧(1978-),男,湖北天门人,中南大学教授,工学博士,从事列车空气动力学研究

  • 中图分类号: U270.2

Effect of lift airfoils on characteristics of slipstream and wake flow of high-speed trains

Funds: 

National Key Research and Development Program of China 2020YFA0710903

More Information
  • 摘要: 为探究在高速列车车顶安装升力翼后引起的列车周围流场剧变,以三车编组1∶10缩尺比某型CRH高速列车模型为研究对象,采用基于两方程湍流模型的改进型延迟分离涡模拟(IDDES)方法,对比分析了有无升力翼的2种高速列车时均和瞬时列车风的发展规律;利用涡旋识别方法探讨了尾迹区瞬时涡结构分布特征,通过比较尾迹区不同流向位置的列车风分布特征与尾流涡旋移动规律,验证了列车风速度峰值与尾涡非定常特性的相关性,采用频谱分析方法获得了尾迹区速度功率谱密度曲线。研究结果表明:升力翼的几何外形结构加剧了车身表面边界层分离,令列车顶部和侧表面边界层厚度增大;升力翼使列车风速度峰值增大,其中在轨侧和站台位置最大时均列车风速度分别增大了1.556和1.327倍,且相较原型列车第2个峰值位置延后;由于翼尖涡不断向下游发展和累积,升力翼列车尾流结构表现为大尺度涡对中夹杂着一对更为破碎的细小涡旋,相较原型列车,涡旋与地面之间的剪切作用更强,升力翼列车尾流时均列车风速度在展向分布上有所增大,但垂直分布上有所降低,并在水平面上出现更明显的剪切分离;升力翼列车尾迹中包含较多破碎的小尺度涡,进而影响了尾迹涡脱落频率,使之比原型列车具有更高的能量,且涡旋耗散速度更慢。

     

  • 图  1  升力翼几何参数

    Figure  1.  Geometric parameters of lift airfoil

    图  2  数值计算模型

    Figure  2.  Numerical calculation models

    图  3  计算域几何尺寸和边界条件

    Figure  3.  Geometric dimensions and boundary conditions of computational domain

    图  4  数值计算网格(中网格)

    Figure  4.  Numerical calculating meshes (medium mesh)

    图  5  升力翼高速列车表面n+分布

    Figure  5.  Distribution of n+ for high-speed train with lift airfoils

    图  6  三组网格的时均列车风速度分布

    Figure  6.  Distributions of time-averaged slipstream velocities with three sets of meshes

    图  7  原型列车时均阻力系数时间历程曲线

    Figure  7.  Time history curves of time-averaged drag coefficients of traditional train

    图  8  数值模拟与风洞试验列车时均阻力系数对比

    Figure  8.  Comparison of time-averaged drag coefficients of train between numerical simulation and wind tunnel test

    图  9  DDES方法的计算域

    Figure  9.  Computational domain of DDES method

    图  10  IDDES和DDES方法的时均流向列车风速度对比

    Figure  10.  Comparison of time-averaged streamwise slipstream velocities between IDDES and DDES methods

    图  11  原型列车和升力翼列车时均列车风速度分布

    Figure  11.  Distributions of time-averaged slipstream velocities of traditional train and train with lift airfoils

    图  12  原型列车和升力翼列车周围边界层流动

    Figure  12.  Boundary layer flows around traditional train

    图  13  原型列车和升力翼列车瞬时列车风速度

    Figure  13.  Instantaneous slipstream velocities of traditional train and train with lift airfoils

    图  14  尾流涡旋结构

    Figure  14.  Wake vortex structures

    图  15  车身周围涡旋结构

    Figure  15.  Vortex structures around train body

    图  16  与尾车鼻尖点不同距离垂直截面的时均列车风速度

    Figure  16.  Time-averaged slipstream velocities at vertical planes with different distances from nose tip of tail train

    图  17  轨侧和站台高度水平面的时均列车风速度

    Figure  17.  Time-averaged slipstream velocities at horizontal planes of trackside and platform height

    图  18  不同流向位置Q的时均分布

    Figure  18.  Time-averaged distributions of Q at different streamwise positions

    图  19  尾迹区速度监测点

    Figure  19.  Velocity monitor points in wake area

    图  20  尾迹区不同位置速度监测点的PSD

    Figure  20.  PSDs of velocity monitor points at different positions in wake area

    表  1  数值计算网格信息

    Table  1.   Numerical calculating meshes information

    网格 n+ y+ x+ 网格数量/万
    1 340 340 2 000
    1 320 320 3 500
    1 280 280 4 800
    下载: 导出CSV

    表  2  IDDES和DDES方法的时均流向列车风速度峰值对比

    Table  2.   Comparison of peak time-averaged streamwise slipstream velocities between IDDES and DDES methods

    模拟方法 正峰值 负峰值 峰峰值
    DDES[23] 0.042 2 -0.042 0 0.084 2
    IDDES 0.046 4 -0.044 1 0.090 5
    下载: 导出CSV
  • [1] 沈钢, 毛鑫, 毛文力, 等. 轮轨系统的现状与展望[J]. 交通运输工程学报, 2022, 22(1): 42-57. doi: 10.19818/j.cnki.1671-1637.2022.01.003

    SHEN Gang, MAO Xin, MAO Wen-li, et al. Status and future trend of wheel/rail system[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 42-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.003
    [2] 王瑞东, 倪章松, 张军, 等. 高速列车串列升力翼翼型优化设计[J]. 空气动力学学报, 2022, 40(2): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202202010.htm

    WANG Rui-dong, NI Zhang-song, ZHANG Jun, et al. Optimization design of tandem airfoils on high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 129-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202202010.htm
    [3] 戴志远, 李田, 张卫华, 等. 气动翼对高速磁悬浮列车升力特性的影响[J]. 西南交通大学学报, 2022, 57(3): 498-505. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202203004.htm

    DAI Zhi-yuan, LI Tian, ZHANG Wei-hua, et al. Effect of aerodynamic wings on lift force characteristics of high-speed maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202203004.htm
    [4] DING San-san, LI Qiang, TIAN Ai-qin, et al. Aerodynamic design on high-speed trains[J]. Acta Mechanica Sinica, 2016, 32(2): 215-232. doi: 10.1007/s10409-015-0546-y
    [5] FLYNN D, HEMIDA H, SOPER D, et al. Detached-eddy simulation of the slipstream of an operational freight train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132: 1-12. doi: 10.1016/j.jweia.2014.06.016
    [6] WANG Shi-bo, BELL J R, BURTON D, et al. The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165: 46-57. doi: 10.1016/j.jweia.2017.03.001
    [7] 朱春丽, 梁习锋, 陈敬文, 等. 考虑受电弓设备的高速列车列车风数值模拟研究[J]. 铁道科学与工程学报, 2016, 13(8): 1447-1456. doi: 10.3969/j.issn.1672-7029.2016.08.001

    ZHU Chun-li, LIANG Xi-feng, CHEN Jing-wen, et al. Numerical simulation of the slipstream around a high-speed train with pantograph system[J]. Journal of Railway Science and Engineering, 2016, 13(8): 1447-1456. (in Chinese) doi: 10.3969/j.issn.1672-7029.2016.08.001
    [8] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. doi: 10.1016/j.jweia.2014.09.007
    [9] 潘永琛, 姚建伟, 刘涛, 等. 基于涡旋识别方法的高速列车尾涡结构的讨论[J]. 力学学报, 2018, 50(3): 667-676. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803022.htm

    PAN Yong-chen, YAO Jian-wei, LIU Tao, et al. Discussion on the wake vortex structure of a high speed train by vortex identification methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 667-676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803022.htm
    [10] XIA Chao, WANG Han-feng, SHAN Xi-zhuang, et al. Effects of ground configurations on the slipstream and near wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 177-189. doi: 10.1016/j.jweia.2017.06.005
    [11] GUO Zi-jian, LIU Tang-hong, CHEN Zheng-wei, et al. Comparative numerical analysis of the slipstream caused by single and double unit trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 395-408. doi: 10.1016/j.jweia.2017.11.022
    [12] CHEN Guang, LI Xiao-bai, LIU Zhen, et al. Dynamic analysis of the effect of nose length on train aerodynamic performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 198-208. doi: 10.1016/j.jweia.2018.11.021
    [13] 牛纪强, 梁习锋, 周丹, 等. 高速列车非定常气动力及其波动特性的雷诺数效应[J]. 华南理工大学学报(自然科学版), 2016, 44(8): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201608013.htm

    NIU Ji-qiang, LIANG Xi-feng, ZHOU Dan, et al. Reynolds number effect of unsteady aerodynamic force and spectrum characteristics of high-speed train[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(8): 82-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201608013.htm
    [14] 钱宇, 蒋皓. 翼梢装置对翼尖涡耗散的影响研究[J]. 计算机仿真, 2021, 38(3): 26-29, 55.

    QIAN Yu, JIANG Hao. Study on the effect of winglet on dissipation of wing-tip vortex[J]. Computer Simulation, 2021, 38(3): 26-29, 55. (in Chinese)
    [15] WANG Jia-bin, MINELLI G, DONG Tian-yun, et al. Impact of the bogies and cavities on the aerodynamic behaviour of a high-speed train. An IDDES study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207: 104406.
    [16] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
    [17] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
    [18] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202.
    [19] TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Springer. The Euromech Colloquium 412 on LES of Complex Transitional and Turbulent Flows. Berlin: Springer, 2002: 239-254.
    [20] FLYNN D, HEMIDA H, BAKER C. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14-28.
    [21] 倪章松. 高速铁路限界约束条件下列车升力翼及翼身融合设计方法及技术2021年度课题技术进展报告[R]. 绵阳: 中国空气动力研究与发展中心, 2021.

    NI Zhang-song. Technical progress report of the project in 2021 of design method and technology of train lift wing and wing body fusion under clearance constraints of high-speed railway[R]. Mianyang: China Aerodynamics Research and Development Center, 2021. (in Chinese)
    [22] ZHANG J, HE K, XIONG X, et al. Numerical simulation with a DES approach for a high-speed train subjected to the crosswind[J]. Journal of Applied Fluid Mechanics, 2017, 10(5): 1329-1342.
    [23] SUN Zhen-xu, YAO Shuan-bao, WEI Lian-yi, et al. Numerical investigation on the influence of the streamlined structures of the high-speed train's nose on aerodynamic performances[J]. Applied Sciences, 2021, 11(2): 784.
    [24] HEMIDA H, BAKER C, GAO Guan-jun. The calculation of train slipstreams using large-eddy simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(1): 25-36.
    [25] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.
    [26] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298.
    [27] BELL J R, BORTON D, THOMPSON M, et al. Wind tunnel analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134: 122-138.
    [28] LI Xiao-bai, CHEN Guang, LIANG Xi-feng, et al. Research on spectral estimation parameters for application of spectral proper orthogonal decomposition in train wake flows[J]. Physics of Fluids, 2021, DOI: 10.1063/5.0070092.
    [29] BELL J R, BURTON D, THOMPSON M C, et al. Flow topology and unsteady features of the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183.
    [30] MULD T W, EFRAIMSSON G, HENNINGSON D S. Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition[J]. Computers and Fluids, 2012, 57: 87-97.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  129
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回