留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进ACGAN的齿轮箱多模式数据增强与故障诊断

邵海东 李伟 林健 闵志闪

邵海东, 李伟, 林健, 闵志闪. 基于改进ACGAN的齿轮箱多模式数据增强与故障诊断[J]. 交通运输工程学报, 2023, 23(3): 188-197. doi: 10.19818/j.cnki.1671-1637.2023.03.014
引用本文: 邵海东, 李伟, 林健, 闵志闪. 基于改进ACGAN的齿轮箱多模式数据增强与故障诊断[J]. 交通运输工程学报, 2023, 23(3): 188-197. doi: 10.19818/j.cnki.1671-1637.2023.03.014
SHAO Hai-dong, LI Wei, LIN Jian, MIN Zhi-shan. Multi-mode data augmentation and fault diagnosis of gearbox using improved ACGAN[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 188-197. doi: 10.19818/j.cnki.1671-1637.2023.03.014
Citation: SHAO Hai-dong, LI Wei, LIN Jian, MIN Zhi-shan. Multi-mode data augmentation and fault diagnosis of gearbox using improved ACGAN[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 188-197. doi: 10.19818/j.cnki.1671-1637.2023.03.014

基于改进ACGAN的齿轮箱多模式数据增强与故障诊断

doi: 10.19818/j.cnki.1671-1637.2023.03.014
基金项目: 

国家重点研发计划 2020YFB1712100

国家自然科学基金项目 51905160

湖南省自然科学基金项目 2020JJ20017

详细信息
    作者简介:

    邵海东(1990-),男,浙江宁波人,湖南大学副教授,工学博士,从事运载装备智能故障诊断和寿命预测研究

  • 中图分类号: U260

Multi-mode data augmentation and fault diagnosis of gearbox using improved ACGAN

Funds: 

National Key Research and Development Program of China 2020YFB1712100

National Natural Science Foundation of China 51905160

Natural Science Foundation of Hunan Province 2020JJ20017

More Information
    Author Bio:

    SHAO Hai-dong(1990-), male, associate professor, PhD, hdshao@hnu.edu.cn

  • 摘要: 针对现有生成对抗网络(GAN)难以高效率生成多模式的故障样本和训练不稳定问题,提出了一种改进辅助分类生成对抗网络(ACGAN),并将其用于齿轮箱多模式数据增强和智能故障诊断,以确保运载工具的安全运行;引入独立的分类器构建新型ACGAN框架,改善了经典ACGAN的分类精度与判别精度之间的兼容性;使用Wasserstein距离定义具有平滑特性的新型对抗损失函数,以此克服GAN易出现模式崩塌和梯度消失的缺点;引入谱归一化方法替代权重裁剪,限制判别器的权重参数,提高对抗训练过程的稳定性;为验证改进ACGAN的有效性和优越性,对齿轮箱的6类健康状态样本进行试验分析。分析结果表明:改进ACGAN生成的故障样本在数据层面和特征层面取得了更好的质量评估结果,其中基于结构相似度的评估指标平均优于对比方法0.249 3,基于最大平均差异的评估指标平均优于对比方法0.696 6;改进ACGAN的训练过程更加稳定,其损失函数具有更优的收敛性,同时在多模式故障诊断情景下具有更高的效率,其训练时间缩减为对比方法的20%;针对故障样本缺失的情况,改进ACGAN的生成样本能有效辅助深度学习智能故障诊断模型的训练,可将诊断精度由75.34%提升至97.06%。

     

  • 图  1  ACGAN结构

    Figure  1.  Architecture of ACGAN

    图  2  改进ACGAN结构框架

    Figure  2.  Structure framework of improved ACGAN

    图  3  改进ACGAN的整体流程

    Figure  3.  Overall process of improved ACGAN

    图  4  齿轮箱传动结构

    Figure  4.  Transmission structure of gearbox

    图  5  样本生成过程

    Figure  5.  Generation process of samples

    图  6  基于SSIM的生成样本质量评估

    Figure  6.  Quality evaluation of generated samples using SSIM

    图  7  基于MMD的生成样本质量评估

    Figure  7.  Quality evaluation of generated samples using MMD

    图  8  特征可视化结果

    Figure  8.  Feature visualization results

    图  9  改进ACGAN和ACGAN的训练过程对比

    Figure  9.  Comparison of training processes of improved ACGAN and ACGAN

    图  10  对比试验的故障诊断结果

    Figure  10.  Fault diagnosis results of comparison experiments

    表  1  改进ACGAN结构参数

    Table  1.   Structure parameters of improved ACGAN

    网络 结构参数
    判别器 二维卷积层(5×5×32)
    二维卷积层(3×3×64)
    二维卷积层(3×3×128)
    二维卷积层(3×3×256)
    全连接层(1)
    生成器 Embedding层(故障类别数量, 噪声维度)
    全连接层(8 192)
    二维转置卷积层(5×5×128)
    二维转置卷积层(5×5×64)
    二维转置卷积层(5×5×32)
    二维转置卷积层(5×5×1)
    分类器 二维卷积层(3×3×32)+最大池化层
    二维卷积层(3×3×64) +最大池化层
    二维卷积层(3×3×128) +最大池化层
    二维卷积层(3×3×256) +最大池化层
    全连接层(256)
    全连接层(128)
    全连接层(故障类别数量)
    优化器 判别器(学习率为1.0×10-4β1=0.5,β2=0.999)
    生成器(学习率为1.0×10-4β1=0.5,β2=0.999)
    分类器(学习率为1.0×10-5β1=0.9,β2=0.999)
    下载: 导出CSV

    表  2  齿轮箱健康状态描述

    Table  2.   Details of health states of gearbox

    健康状态标签 健康状态信息
    C0 正常
    C1 32齿齿轮纵向剥落,48齿齿轮点蚀
    C2 48齿齿轮点蚀
    C3 48齿齿轮点蚀,80齿齿轮断齿,轴承1滚动体故障
    C4 32齿齿轮纵向剥落,48齿齿轮点蚀,80齿齿轮断齿,轴承1内圈故障,轴承2滚动体故障,轴承3外圈故障
    C5 80齿齿轮断齿,轴承1内圈故障,轴承2滚动体故障,轴承3外圈故障,主动轴不平衡
    下载: 导出CSV

    表  3  不同方法的故障诊断性能对比

    Table  3.   Comparison of fault diagnosis performances of different methods

    真实样本数 添加生成样本数 故障诊断准确率/%
    添加真实样本数 改进ACGAN WGAN-GP ACGAN
    50 0 70.66±1.40
    50 25 77.02±1.30 75.34±1.88 76.12±1.59 73.31±1.26
    50 50 91.57±0.57 90.80±0.28 90.98±0.68 74.20±1.41
    50 75 94.68±0.32 93.64±0.31 93.40±0.25 74.94±1.28
    50 100 96.64±0.52 94.94±0.50 94.61±0.87 75.09±1.45
    50 125 97.42±0.61 95.92±0.51 95.56±0.45 76.26±1.12
    50 150 98.81±0.58 97.06±0.69 96.70±0.61 77.54±1.68
    下载: 导出CSV

    表  4  不同方法的训练时间对比

    Table  4.   Comparison of training times of different methods

    数据增强方法 需训练的GAN模型数量 收敛时的迭代次数 总训练时间/s
    改进ACGAN 1 20 000 5 240
    WGAN-GP 6 15 000(平均) 26 736
    ACGAN 1 不收敛 7 083(30 000次迭代)
    下载: 导出CSV
  • [1] 雷亚国, 许学方, 蔡潇, 等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报, 2021, 57(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104001.htm

    LEI Ya-guo, XU Xue-fang, CAI Xiao, et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering, 2021, 57(4): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104001.htm
    [2] 朱海燕, 王超文, 邬平波, 等. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验[J]. 交通运输工程学报, 2020, 20(5): 135-150. doi: 10.19818/j.cnki.1671-1637.2020.05.011

    ZHU Hai-yan, WANG Chao-wen, WU Ping-bo, et al. High-speed train gearbox housing vibration test based on small roller high-frequency excitation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 135-150. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.011
    [3] 江星星, 宋秋昱, 朱忠奎, 等. 基于收敛趋势变分模式分解的齿轮箱故障诊断方法[J]. 交通运输工程学报, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015

    JIANG Xing-xing, SONG Qiu-yu, ZHU Zhong-kui, et al. Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 177-189. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.015
    [4] SHAO Hai-dong, LIN Jing, ZHANG Liang-wei, et al. A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance[J]. Information Fusion, 2021, 74: 65-76. doi: 10.1016/j.inffus.2021.03.008
    [5] ZHAO Hui-min, LIU Jie, CHEN Hua-yue, et al. Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network[J]. IEEE Transactions on Reliability, 2020, 197: 105883.
    [6] 邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm

    SHAO Hai-dong, ZHANG Xiao-yang, CHENG Jun-sheng, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm
    [7] 张龙, 甄灿壮, 熊国良, 等. 基于深度时频特征的机车轴承故障诊断[J]. 交通运输工程学报, 2021, 21(6): 247-258. doi: 10.19818/j.cnki.1671-1637.2021.06.019

    ZHANG Long, ZHEN Can-zhuang, XIONG Guo-liang, et al. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 247-258. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.06.019
    [8] 池永为, 杨世锡, 焦卫东. 基于LSTM-RNN的滚动轴承故障多标签分类方法[J]. 振动、测试与诊断, 2020, 40(3): 563-571, 629. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003021.htm

    CHI Yong-wei, YANG Shi-xi, JIAO Wei-dong. A multi-label fault classification method for rolling bearing based on LSTM-RNN[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(3): 563-571, 629. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003021.htm
    [9] SURENDRAN R, KHALAF O, ROMERO C. Deep learning based intelligent industrial fault diagnosis model[J]. Computers, Materials and Continua, 2022, 70(3): 6323-6338. doi: 10.32604/cmc.2022.021716
    [10] CHEN Hong-tian, JIANG Bing, DING S, et al. Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1700-1716.
    [11] ZHAO Rui, YAN Ru-qiang, CHEN Zheng-hua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
    [12] 沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012

    SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
    [13] 邵海东, 肖一鸣, 颜深. 仿真数据驱动的改进无监督域适应轴承故障诊断[J]. 机械工程学报, 2023, 59(3): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202303008.htm

    SHAO Hai-dong, XIAO Yi-ming, YAN Shen. Simulation data-driven enhanced unsupervised domain adaptation for bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2023, 59(3): 76-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202303008.htm
    [14] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
    [15] WANG Zi-rui, WANG Jun, WANG You-ren. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing, 2018, 310(8): 213-222.
    [16] 何强, 唐向红, 李传江, 等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程, 2021, 32(10): 1164-1171, 1180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202110004.htm

    HE Qiang, TANG Xiang-hong, LI Chuan-jiang, et al. Bearing fault diagnosis method based on small sample data under unbalanced loads[J]. China Mechanical Engineering, 2021, 32(10): 1164-1171, 1180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202110004.htm
    [17] 戴俊, 王俊, 朱忠奎, 等. 基于生成对抗网络和自动编码器的机械系统异常检测[J]. 仪器仪表学报, 2019, 40(9): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201909002.htm

    DAI Jun, WANG Jun, ZHU Zhong-kui, et al. Anomaly detection of mechanical systems based on generative adversarial network and auto-encoder[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201909002.htm
    [18] LIU Shen, CHEN Jing-long, QU Cheng, et al. LOSGAN: latent optimized stable GAN for intelligent fault diagnosis with limited data in rotating machinery[J]. Measurement Science and Technology, 2021, 32: 045101.
    [19] GONG Jia-liang, XU Xiao-dong, LEI Ying-ke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898-2912.
    [20] RASTOGI R, GANGNANI R. Semi-supervised multi category classification with generative adversarial networks[C]//Springer. 2019 International Conference on Pattern Recognition and Machine Intelligence. Berlin: Springer, 2019: 286-294.
    [21] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//ACM. 2017 International Conference on Machine Learning. Sydney: ACM, 2017: 2642-2651.
    [22] SHAO Si-yu, WANG Pu, YAN Ru-qiang. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry, 2019, 106: 85-93.
    [23] GUO Qing-wen, LI Yi-bin, SONG Yan, et al. Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2044-2053.
    [24] 肖雄, 肖宇雄, 张勇军, 等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41(2): 738-749. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202102032.htm

    XIAO Xiong, XIAO Yu-xiong, ZHANG Yong-jun, et al. Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE, 2021, 41(2): 738-749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202102032.htm
    [25] 孙灿飞, 王友仁, 夏裕彬. 基于SCAE-ACGAN的直升机行星齿轮裂纹故障诊断[J]. 振动、测试与诊断, 2021, 41(3): 495-502, 620-621. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202103012.htm

    SUN Can-fei, WANG You-ren, XIA Yu-bin. Fault diagnosis of helicopter planetary gear tooth crack based on SCAE-ACGAN[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(3): 495-502, 620-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202103012.htm
    [26] LEE M H, SEOK J H, Controllable generative adversarial network[J]. IEEE Access, 2019, 7: 28158-28169.
    [27] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//ACM. International Conference on Machine Learning. Sydney: ACM, 2017: 214-233.
    [28] XIA Wei-hao, ZHANG Yu-lun, YANG Yu-jiu, et al. GAN inversion: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3121-3138.
    [29] ALATAT H, SIEGEL D, LEE J. A systematic methodology for gearbox health assessment and fault classification[J]. Journal of Prognostics and Health Management, 2011, 2(1): 16-22.
    [30] WEN Long, LI Xin-yu, GAO Liang, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998.
    [31] 马燕, 余海军, 钟发生, 等. 基于残差编解码网络的CT图像金属伪影校正[J]. 仪器仪表学报, 2020, 41(8): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202008018.htm

    MA Yan, YU Hai-jun, ZHONG Fa-sheng, et al. CT metal artifact reduction based on the residual encoder-decoder network[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 160-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202008018.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  85
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-08
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回