留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运营事件下基于韧性的地铁网络保护决策优化

路庆昌 刘鹏 徐标 崔欣

路庆昌, 刘鹏, 徐标, 崔欣. 运营事件下基于韧性的地铁网络保护决策优化[J]. 交通运输工程学报, 2023, 23(3): 209-220. doi: 10.19818/j.cnki.1671-1637.2023.03.016
引用本文: 路庆昌, 刘鹏, 徐标, 崔欣. 运营事件下基于韧性的地铁网络保护决策优化[J]. 交通运输工程学报, 2023, 23(3): 209-220. doi: 10.19818/j.cnki.1671-1637.2023.03.016
LU Qing-chang, LIU Peng, XU Biao, CUI Xin. Resilience-based protection decision optimization for metro network under operational incidents[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 209-220. doi: 10.19818/j.cnki.1671-1637.2023.03.016
Citation: LU Qing-chang, LIU Peng, XU Biao, CUI Xin. Resilience-based protection decision optimization for metro network under operational incidents[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 209-220. doi: 10.19818/j.cnki.1671-1637.2023.03.016

运营事件下基于韧性的地铁网络保护决策优化

doi: 10.19818/j.cnki.1671-1637.2023.03.016
基金项目: 

国家自然科学基金项目 71971029

霍英东教育基金会高等院校青年教师基金项目 171069

陕西省自然科学基础研究计划项目 2021JC-28

详细信息
    作者简介:

    路庆昌(1984-),男,山东聊城人,长安大学教授,工学博士,从事交通网络建模研究

  • 中图分类号: U231.4

Resilience-based protection decision optimization for metro network under operational incidents

Funds: 

National Natural Science Foundation of China 71971029

Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China 171069

Natural Science Basic Research Program of Shaanxi 2021JC-28

More Information
  • 摘要: 为缓解地铁运营事件的负面影响,提高地铁网络应对运营事件的能力,研究了地铁网络保护决策优化问题;以网络韧性为目标,考虑了网络性能降级和恢复过程中韧性曲线的变化特性和累积性能损失,构建了地铁网络保护决策的双层优化模型,上层模型为随机整数规划模型,用于获取不确定运营事件场景下待保护站点的最优选择,下层模型为用户均衡配流问题,特别考虑了容量有限站点内排队客流和乘客等待恢复时间的变化,以准确估计运营事件下乘客出行延误;基于遗传算法和Frank-Wolfe算法分别求解上层模型和下层模型;以西安市中心区域地铁网络为例,验证并分析了提出的模型和算法。分析结果表明:基于韧性的保护决策通过保护研究区域37.5%的站点,可以使网络性能损失降低超过50%,优于基于脆弱性的保护决策和不考虑公交网络替代作用的保护决策;当保护网络中1/2的地铁站点时,相比基于脆弱性的保护决策,基于韧性的保护决策的网络性能损失和客流时间损失分别降低了6.18%和582 h;公交网络的替代作用会导致地铁网络中超过2/3的站点保护优先级发生变化;同一类型的站点中,客流量越大,越依赖公交网络的替代作用;地铁站点的保护优先级主要取决于经过的客流量和运输能力,站点经过的客流量越大,运输能力越低,其保护优先级越高;站点类型也是影响保护优先级的因素,尤其对于客流量大的站点,非换乘站需要更高的保护优先级。

     

  • 图  1  地铁网络示例

    Figure  1.  Example of metro network

    图  2  运营事件下地铁网络性能演化曲线

    Figure  2.  Metro network performance evolution curves under operational incidents

    图  3  算法流程

    Figure  3.  Flow of algorithm

    图  4  西安中心区域地铁网络

    Figure  4.  Metro network in Xi'an central area

    图  5  B=9时遗传算法和穷举法的适应度收敛过程

    Figure  5.  Fitness convergence processes of genetic algorithm and exhaustive method when B=9

    图  6  不同保护预算水平下基于不同计算方法的网络性能损失降低率和客流时间损失

    Figure  6.  Network performance loss reduction rates and passenger flow time losses based on different calculation methods under different protection budget levels

    图  7  决策P2到决策P的站点保护优先级变化

    Figure  7.  Changes in station protection priorities from decision P2 to decision P

    图  8  不同运营恢复时间下的地铁网络韧性损失

    Figure  8.  Resilience losses of metro network under different operation recovery times

    表  1  地铁站点参数

    Table  1.   Metro station parameters

    编号 站点名称 车头时距/min 地铁列车容量/(人次·veh-1) 正常运营路段客流/(人次·h-1)
    1 西北工业大学(5号线) 4 560 2 232
    2 边家村 4 460 2 127
    3 省人民医院·黄雁村 4 460 2 505
    4 南稍门(5号线) 4 380 2 949
    5 文艺路 4 440 1 428
    6 建筑科技大学·李家村(5号线) 4 540 2 547
    7 太乙路 4 560 1 242
    8 雁翔路北口 4 560 1 482
    9 青龙寺(5号线) 4 480 1 389
    10 青龙寺(3号线) 3 480 1 563
    11 北池头 3 480 1 299
    12 大雁塔(3号线) 3 320 3 852
    13 小寨(3号线) 3 380 3 624
    14 吉祥村 3 480 2 568
    15 太白南路 3 480 2 103
    16 科技路(3号线) 3 560 2 985
    17 科技路(6号线) 4 560 2 307
    18 西北工业大学(6号线) 4 560 2 307
    19 南稍门(2号线) 2 360 2 565
    20 建筑科技大学·李家村(4号线) 4 400 2 343
    21 体育场 2 400 1 629
    22 西安科技大学 4 400 1 341
    23 小寨(2号线) 2 340 2 820
    24 大雁塔(4号线) 4 280 2 682
    下载: 导出CSV

    表  2  不同保护预算水平下的最优保护决策

    Table  2.   Optimal protection decisions under different protection budget levels

    预算/个 韧性 保护决策站点选择
    0 2.72
    3 2.09 12、14、15
    6 1.61 4、12、13、14、15、16
    9 1.25 2、3、4、12、13、14、15、16、21
    12 0.91 2、3、4、6、12、13、14、15、16、19、21、24
    15 0.62 2、3、4、6、12、13、14、15、16、17、18、19、21、22、24
    18 0.38 2、3、4、6、8、10、12、13、14、15、16、17、18、19、21、22、23、24
    21 0.17 1、2、3、4、6、7、8、10、12、13、14、15、16、17、18、19、20、21、22、23、24
    下载: 导出CSV
  • [1] LU Qing-chang. Modeling network resilience of rail transit under operational incidents[J]. Transportation Research Part A: Policy and Practice, 2018, 117: 227-237. doi: 10.1016/j.tra.2018.08.015
    [2] LIU Kai, ZHU Jia-tong, WANG Ming. An event-based probabilistic model of disruption risk to urban metro networks[J]. Transportation Research Part A: Policy and Practice, 2021, 147: 93-105. doi: 10.1016/j.tra.2021.03.010
    [3] ZHANG Shu-yang, LO H K, NG K F, et al. Metro system disruption management and substitute bus service: a systematic review and future directions[J]. Transport Reviews, 2021, 41(2): 230-251. doi: 10.1080/01441647.2020.1834468
    [4] 马超群, 张爽, 陈权, 等. 客流特征视角下的轨道交通网络特征及其脆弱性[J]. 交通运输工程学报, 2020, 20(5): 208-216. doi: 10.19818/j.cnki.1671-1637.2020.05.017

    MA Chao-qun, ZHANG Shuang, CHEN Quan, et al. Characteristics and vulnerability of rail transit network based on perspective of passenger flow characteristics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 208-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.017
    [5] LU Qing-chang, ZHANG Lei, XU Peng-cheng, et al. Modeling network vulnerability of urban rail transit under cascading failures: a coupled map lattices approach[J]. Reliability Engineering and System Safety, 2022, 221: 108320. doi: 10.1016/j.ress.2022.108320
    [6] YAN Yong-ze, HONG Liu, HE Xiao-zheng, et al. Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 105: 39-59. doi: 10.1016/j.tre.2017.07.001
    [7] 陈学伟, 秦进, 周颖靓. 不确定环境下交通网络应急预防护优化研究[J]. 铁道科学与工程学报, 2021, 18(5): 1307-1315. doi: 10.19713/j.cnki.43-1423/u.T20200623

    CHEN Xue-wei, QIN Jin, ZHOU Ying-liang. Optimization of transportation network emergency prevention in uncertain environments[J]. Journal of Railway Science and Engineering, 2021, 18(5): 1307-1315. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.T20200623
    [8] JIN Jian-gang, LU Lin-jun, SUN Li-jun, et al. Optimal allocation of protective resources in urban rail transit networks against intentional attacks[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 84: 73-87. doi: 10.1016/j.tre.2015.10.008
    [9] STARITA S, SCAPARRA M P. Optimizing dynamic investment decisions for railway systems protection[J]. European Journal of Operational Research, 2016, 248(2): 543-557. doi: 10.1016/j.ejor.2015.07.025
    [10] STARITA S, SCAPARRA M P. Passenger railway network protection: a model with variable post-disruption demand service[J]. Journal of the Operational Research Society, 2017, 64(4): 603-618.
    [11] SARHADI H, TULETT D M, VERMA M. An analytical approach to the protection planning of a rail intermodal terminal network[J]. European Journal of Operational Research, 2017, 257(2): 511-525. doi: 10.1016/j.ejor.2016.07.036
    [12] 宋鸿宇, 上官伟, 盛昭, 等. 基于弹复力调整的高速列车群动态运行轨迹优化方法[J]. 交通运输工程学报, 2021, 21(4): 235-250. doi: 10.19818/j.cnki.1671-1637.2021.04.018

    SONG Hong-yu, SHANGGUAN Wei, SHENG Zhao, et al. Optimization method of dynamic trajectory for high-speed train group based on resilience adjustment[J]. Journal of Traffic and Transportation Engineering, 2020, 21(4): 235-250. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.018
    [13] 李兆隆, 金淳, 胡畔, 等. 基于弹复性的交通网络应急恢复阶段策略优化[J]. 系统工程理论与实践, 2019, 39(11): 2828-2841. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201911010.htm

    LI Zhao-long, JIN Chun, HU Pan, et al. Resilience-based recovery strategy optimization in emergency recovery phase for transportation networks[J]. Systems Engineering—Theory and Practice, 2019, 39(11): 2828-2841. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201911010.htm
    [14] BEŠINOVIĆ N. Resilience in railway transport systems: a literature review and research agenda[J]. Transport Reviews, 2020, 40(4): 457-478. doi: 10.1080/01441647.2020.1728419
    [15] ZHANG Dong-ming, DU Fei, HUANG Hong-wei, et al. Resiliency assessment of urban rail transit networks: Shanghai Metro as an example[J]. Safety Science, 2018, 106: 230-243. doi: 10.1016/j.ssci.2018.03.023
    [16] 张洁斐, 任刚, 马景峰, 等. 基于韧性评估的地铁网络修复时序决策方法[J]. 交通运输系统工程与信息, 2020, 20(4): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004003.htm

    ZHANG Jie-fei, REN Gang, MA Jing-feng, et al. Decision-making method of repair sequence for metro network based on resilience evaluation[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004003.htm
    [17] 殷勇, 陈锦渠, 朱蔓, 等. 城市轨道交通站点失效修复策略[J]. 西南交通大学学报, 2020, 55(4): 865-872. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004024.htm

    YIN Yong, CHEN Jin-qu, ZHU Man, et al. Repair strategies for failure of urban rail transit stations[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 865-872. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004024.htm
    [18] 黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市地铁网络恢复策略研究[J]. 灾害学, 2021, 36(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101007.htm

    HUANG Ying, LIU Meng-ru, WEI Jin-guo, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101007.htm
    [19] 吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105021.htm

    LYU Biao, GUAN Xin-yi, GAO Zi-qiang. Evaluation and optimal recovery strategy of metro network service resilience[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 198-205, 221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105021.htm
    [20] 陈锦渠, 张帆, 彭其渊, 等. 大客流下城市轨道交通站点韧性评估及划分[J]. 安全与环境学报, 2022, 22(6): 2994-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202206008.htm

    CHEN Jin-qu, ZHANG Fan, PENG Qi-yuan, et al. Resilience assessment and partition of an urban rail transit station under large passenger flow[J]. Journal of Safety and Environment, 2022, 22(6): 2994-3002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202206008.htm
    [21] WANG J Y T, EHRGOTT M, CHEN A. A bi-objective user equilibrium model of travel time reliability in a road network[J]. Transportation Research Part B: Methodological, 2014, 66: 4-15.
    [22] CAI Hong, ZHU Jin-fu, YANG Cheng, et al. Vulnerability analysis of metro network incorporating flow impact and capacity constraint after a disaster[J]. Journal of Urban Planning and Development, 2017, 143(2): 04016031.
    [23] CHEN Jin-qu, LIU Jie, PENG Qi-yuan, et al. Resilience assessment of an urban rail transit network: a case study of Chengdu Subway[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 586: 126517.
    [24] NOGAL M, O'CONNOR A, CAULFIELD B, et al. Resilience of traffic networks: from perturbation to recovery via a dynamic restricted equilibrium model[J]. Reliability Engineering and System Safety, 2016, 156: 84-96.
    [25] 侯本伟, 李小军, 韩强, 等. 基于Monte Carlo模拟的公路网络震后连通性与通行时间分析[J]. 中国公路学报, 2017, 30(6): 287-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201706012.htm

    HOU Ben-wei, LI Xiao-jun, HAN Qiang, et al. Post-earthquake connectivity and travel time analysis of highway networks based on Monte Carlo simulation[J]. China Journal of Highway and Transport, 2017, 30(6): 287-296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201706012.htm
    [26] AYDIN N Y, DUZGUN H S, HEINIMANN H R, et al. Framework for improving the resilience and recovery of transportation networks under geohazard risks[J]. International Journal of Disaster Risk Reduction, 2018, 31: 832-843.
    [27] 李淑庆, 李哲, 朱文英. 一体化公交网络均衡配流模型[J]. 交通运输工程学报, 2013, 13(1): 62-69. doi: 10.19818/j.cnki.1671-1637.2013.01.010

    LI Shu-qing, LI Zhe, ZHU Wen-ying. Equilibrium assignment model of integrated transit network[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 62-69. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2013.01.010
    [28] KATO H, KANEKO Y, INOUE M. Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area[J]. Transportation, 2010, 37: 775-799.
    [29] JUN M J, CHOI K, JEONG J E, et al. Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul[J]. Journal of Transport Geography, 2015, 48: 30-40.
    [30] GORDON J B, KOUTSOPOULOS H N, WILSON N H M. Estimation of population origin-interchange-destination flows on multimodal transit networks[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 350-365.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  738
  • HTML全文浏览量:  258
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回