留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合交通环境下网联自动驾驶车辆跟驰模型与优化策略

彭佳力 上官伟 柴琳果 邱威智

彭佳力, 上官伟, 柴琳果, 邱威智. 混合交通环境下网联自动驾驶车辆跟驰模型与优化策略[J]. 交通运输工程学报, 2023, 23(3): 232-247. doi: 10.19818/j.cnki.1671-1637.2023.03.018
引用本文: 彭佳力, 上官伟, 柴琳果, 邱威智. 混合交通环境下网联自动驾驶车辆跟驰模型与优化策略[J]. 交通运输工程学报, 2023, 23(3): 232-247. doi: 10.19818/j.cnki.1671-1637.2023.03.018
PENG Jia-li, SHANGGUAN Wei, CHAI Lin-guo, QIU Wei-zhi. Car-following model and optimization strategy for connected and automated vehicles under mixed traffic environment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 232-247. doi: 10.19818/j.cnki.1671-1637.2023.03.018
Citation: PENG Jia-li, SHANGGUAN Wei, CHAI Lin-guo, QIU Wei-zhi. Car-following model and optimization strategy for connected and automated vehicles under mixed traffic environment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 232-247. doi: 10.19818/j.cnki.1671-1637.2023.03.018

混合交通环境下网联自动驾驶车辆跟驰模型与优化策略

doi: 10.19818/j.cnki.1671-1637.2023.03.018
基金项目: 

国家自然科学基金项目 52272328

装备预研教育部联合基金项目 8091B022238

北京市自然科学基金项目 L211022

详细信息
    作者简介:

    彭佳力(1997-),男,安徽宿松人,北京交通大学工学博士研究生,从事交通信息工程及控制研究

    上官伟(1979-),男,陕西乾县人,北京交通大学教授,工学博士

  • 中图分类号: U491.112

Car-following model and optimization strategy for connected and automated vehicles under mixed traffic environment

Funds: 

National Natural Science Foundation of China 52272328

Joint Fund of the Ministry of Education for Equipment Preresearch 8091B022238

Natural Science Foundation of Beijing L211022

More Information
  • 摘要: 为进一步提高混合交通环境下车辆的行车效率与交通流的稳定性,在考虑后视效应的基础上,融合多辆前车速度与加速度等状态信息,以指数平滑方式构建了网联自动驾驶车辆(CAV)跟驰模型;在此基础上,研究了前后方车辆数和状态信息完整度对模型稳定性的影响,结合Lyapunov第一方法和线性谐波微扰法进行了线性稳定性分析,并确定了模型最优参数;利用混合交通环境特性,在考虑通信信息丢失的情况下提出了CAV在不同位置和状态下的跟驰策略,并在该策略支撑下进行了不同CAV渗透率的车辆启动、车辆刹车停止、环形道路3个典型场景下的数值仿真。研究结果表明:在刹车停止场景中,全部车辆的停止波速最大提高了26.1%;在车辆启动场景中,启动波速最大提高了15.5%,车辆加速度和速度变化更为平缓;在环形道路场景中,当混合交通流中CAV渗透率由40%提高至100%时,在较大扰动条件下车辆的平均速度波动时间相较于低CAV渗透率场景下降了44.8%,波峰下降了5.7%,波谷上升了19.4%,而CAV渗透率较低时提出的优化策略对混合交通流的改善并不明显。由此可见,在当前构建实际混合交通环境与开展CAV实车试验比较困难的情况下,该跟驰模型和策略可用于车辆跟驰仿真与特定场景下的测试验证,能够有效保障混合交通环境中的交通流扰动吸收和车队稳定行驶。

     

  • 图  1  敏感系数曲线

    Figure  1.  Sensitivity coefficient curves

    图  2  对比试验场景

    Figure  2.  Scenario of comparative experiment

    图  3  车辆跟驰策略

    Figure  3.  Car-following strategies

    图  4  不同CAV渗透率下的车辆减速度

    Figure  4.  Vehicle decelerations under different CAV penetration rates

    图  5  刹车减速过程中车辆参数变化

    Figure  5.  Changes in vehicle parameters during braking and deceleration

    图  6  不同CAV渗透率下的车辆加速度

    Figure  6.  Vehicle accelerations under different CAV penetration rates

    图  7  加速过程中车辆参数变化

    Figure  7.  Changes in vehicle parameters during acceleration

    图  8  车辆速度波动

    Figure  8.  Vehicle speed fluctuations

    图  9  车头间距波动

    Figure  9.  Vehicle headway fluctuations

    图  10  轻微速度扰动下的混合车流速度

    Figure  10.  Speeds of mixed traffic flow under slight speed disturbance

    图  11  较大速度干扰下的混合车流速度

    Figure  11.  Speeds of mixed traffic flow under large speed disturbance

    表  1  模型稳定性参数对比

    Table  1.   Comparison of model stability parameters

    模型 Vmax/ (m·s-1) Vmin/ (m·s-1) Vave/ (m·s-1) Rup/ % Rdown/ %
    BLOVD 0.851 5 0.678 1 0.799 7 6.50 15.18
    OVCM 1.080 1 0.892 7 0.999 5 8.05 10.69
    MHOVA 1.042 8 0.892 7 0.999 7 4.32 10.69
    MVCM 1.036 3 0.895 7 0.999 7 3.67 10.39
    MVISF 0.826 2 0.750 5 0.799 6 3.33 6.13
    下载: 导出CSV

    表  2  不同CAV渗透率下刹车停止场景的参数对比

    Table  2.   Parameter comparison of braking to stop scenario under different CAV penetration rates

    CAV渗透率/% 平均加速度/(m·s-2) 波速/(m·s-1)
    0 -0.504 10.32
    50 -0.532 11.37
    100 -0.548 13.01
    下载: 导出CSV

    表  3  不同CAV渗透率下车辆启动场景的参数对比

    Table  3.   Comparison of parameters of vehicle starting scenario under different CAV penetration rates

    CAV渗透率/% 平均加速度/(m·s-2) 波速/(m·s-1)
    0 1.041 5.67
    50 1.663 6.01
    100 1.922 6.55
    下载: 导出CSV
  • [1] 杨龙海, 张春, 仇晓赟, 等. 车辆跟驰模型研究进展[J]. 交通运输工程学报, 2019, 19(5): 125-138. doi: 10.3969/j.issn.1671-1637.2019.05.014

    YANG Long-hai, ZHANG Chun, QIU Xiao-yun, et al. Research progress on car-following models[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 125-138. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.014
    [2] 田野, 裴华鑫, 晏松, 等. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022, 62(3): 447-457. doi: 10.16511/j.cnki.qhdxxb.2021.22.034

    TIAN Ye, PEI Hua-xin, YAN Song, et al. Extended driving risk field model for i-VICS and its application[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(3): 447-457. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2021.22.034
    [3] CHEN Dan-jue, SRIVASTAVA A, AHN S, et al. Traffic dynamics under speed disturbance in mixed traffic with automated and non-automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2020, 113: 293-313. doi: 10.1016/j.trc.2019.03.017
    [4] NEWELL G F. Nonlinear effects in the dynamics of car following[J]. Operations Research, 1961, 9(2): 209-229. doi: 10.1287/opre.9.2.209
    [5] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042. doi: 10.1103/PhysRevE.51.1035
    [6] HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. doi: 10.1103/PhysRevE.58.133
    [7] JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64(1): 017101. doi: 10.1103/PhysRevE.64.017101
    [8] 孙棣华, 张建厂, 廖孝勇, 等. 非邻近车辆最优速度差模型[J]. 交通运输工程学报, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018

    SUN Di-hua, ZHANG Jian-chang, LIAO Xiao-yong, et al. Optimal velocity difference model of non-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 114-118. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.06.018
    [9] 唐毅, 刘卫宁, 孙棣华, 等. 考虑前后车辆综合效应的跟驰模型及其稳定性分析[J]. 哈尔滨工业大学学报, 2014, 46(2): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201402021.htm

    TANG Yi, LIU Wei-ning, SUN Di-hua, et al. A new car following model with considering the synergy effect of ahead-backward vehicles and its stability analysis[J]. Journal of Harbin Institute of Technology, 2014, 46(2): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201402021.htm
    [10] PENG Guang-han, LU Wei-zhen, HE Hong-di, et al. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 40: 197-205. doi: 10.1016/j.cnsns.2016.04.024
    [11] 纪艺, 史昕, 赵祥模. 基于多前车信息融合的智能网联车辆跟驰模型[J]. 计算机应用, 2019, 39(12): 3685-3690. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201912044.htm

    JI Yi, SHI Xin, ZHAO Xiang-mo. Car-following model for intelligent connected vehicles based on multiple headway information fusion[J]. Journal of Computer Applications, 2019, 39(12): 3685-3690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201912044.htm
    [12] WANG Shu-yi, YU Bin, WU Mi-yi. MVCM car-following model for connected vehicles and simulation-based traffic analysis in mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5267-5274. doi: 10.1109/TITS.2021.3052818
    [13] 吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194. doi: 10.19818/j.cnki.1671-1637.2020.02.015

    WU Bing, WANG Wen-xuan, LI Lin-bo, et al. Longitudinal control model for connected autonomous vehicles influenced by multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.015
    [14] 宗芳, 石佩鑫, 王猛, 等. 考虑前后多车的网联自动驾驶车辆混流跟驰模型[J]. 中国公路学报, 2021, 34(7): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107009.htm

    ZONG Fang, SHI Pei-xin, WANG Meng, et al. Connected and automated vehicle mixed-traffic car-following model considering states of multiple front and rear vehicles[J]. China Journal of Highway and Transport, 2021, 34(7): 105-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107009.htm
    [15] 张毅, 姚丹亚, 李力, 等. 智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息, 2021, 21(5): 40-51. doi: 10.16097/j.cnki.1009-6744.2021.05.005

    ZHANG Yi, YAO Dan-ya, LI Li, et al. Technologies and applications for intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2021.05.005
    [16] NGODUY D, LEE S, TREIBER M, et al. Langevin method for a continuous stochastic car-following model and its stability conditions[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 599-610. doi: 10.1016/j.trc.2019.06.005
    [17] YUAN Zi-jian, WANG Tao, ZHANG Jing, et al. Influences of dynamic safe headway on car-following behavior[J]. Physica A: Statistical Mechanics and its Applications, 2022, 591: 126697. doi: 10.1016/j.physa.2021.126697
    [18] ZHU Wen-xing, ZHANG Li-dong. A new car-following model for autonomous vehicles flow with mean expected velocity field[J]. Physica A: Statistical Mechanics and its Applications, 2018, 492: 2154-2165. doi: 10.1016/j.physa.2017.11.133
    [19] MA Guang-yi, MA Ming-hui, LIANG Shi-dong, et al. Nonlinear analysis of the car-following model considering headway changes with memory and backward looking effect[J]. Physica A: Statistical Mechanics and its Applications, 2021, 562: 125303. doi: 10.1016/j.physa.2020.125303
    [20] TANG Tie-qiao, GUI Yong, ZHANG Jian. ATAC-based car-following model for level 3 autonomous driving considering driver's acceptance[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10309-10321. doi: 10.1109/TITS.2021.3090974
    [21] 秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130. doi: 10.3969/j.issn.1671-1637.2017.03.013

    QIN Yan-yan, WANG Hao, WANG Wei, et al. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.03.013
    [22] MA Hua-qing, WU Hao, HU Yu-cong, et al. Multiple-factors aware car-following model for connected and autonomous vehicles[J]. Transportation Research Record, 2021, 2676(2): 649-662.
    [23] 安树科, 徐良杰, 钱良辉, 等. 考虑前方多车优化速度信息的车辆跟驰模型[J]. 东南大学学报(自然科学版), 2020, 50(6): 1156-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202006024.htm

    AN Shu-ke, XU Liang-jie, QIAN Liang-hui, et al. Car-following model with optimal velocity information of multiple-vehicle ahead[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(6): 1156-1162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202006024.htm
    [24] WEI Chong-feng, PASCHALIDIS E, MERAT N, et al. Human-like decision making and motion control for smooth and natural car following[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 263-274. doi: 10.1109/TIV.2021.3098184
    [25] 杜煜, 上官伟, 柴琳果, 等. 信号交叉口基于出发时刻预测的生态驾驶方法[J]. 中国公路学报, 2022, 35(6): 277-288. doi: 10.19721/j.cnki.1001-7372.2022.06.023

    DU Yu, SHANGGUAN Wei, CHAI Lin-guo, et al. Departure time prediction based eco-driving method of signalized intersection[J]. China Journal of Highway and Transport, 2022, 35(6): 277-288. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2022.06.023
    [26] ZHU Wen-xing, ZHANG H M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model[J]. Physica A: Statistical Mechanics and its Applications, 2018, 496: 274-285. doi: 10.1016/j.physa.2017.12.103
    [27] PENG Jia-li, SHANGGUAN Wei, CHAI Lin-guo. Strategy of lane-changing coupling process for connected and automated vehicles in mixed traffic environment[J]. Transportmetrica B: Transport Dynamics, 2023, 11(1): 979-995. doi: 10.1080/21680566.2022.2154288
    [28] 秦严严, 张健, 陈凌志, 等. 手动-自动驾驶混合交通流元胞传输模型[J]. 交通运输工程学报, 2020, 20(2): 229-238. doi: 10.19818/j.cnki.1671-1637.2020.02.019

    QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, et al. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 229-238. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.019
    [29] PENG Jia-li, SHANGGUAN Wei, ZHANG Lu, et al. An optimal scheduling method using multi-agent a for autonomous shuttle bus[C]//IEEE. 2021 40th Chinese Control Conference. New York: IEEE, 2021: 6040-6045.
    [30] 李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856. doi: 10.16383/j.aas.c190442

    LI Yong-fu, HE Chang-peng, ZHU Hao, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856. (in Chinese) doi: 10.16383/j.aas.c190442
    [31] 彭勇, 沙晓宇, 刘世洁, 等. 基于PFV策略的连续型元胞自动机交通流模型[J]. 交通运输系统工程与信息, 2019, 19(3): 75-80. doi: 10.16097/j.cnki.1009-6744.2019.03.012

    PENG Yong, SHA Xiao-yu, LIU Shi-jie, et al. Continuous cellular automaton traffic flow model based on PFV strategy[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3): 75-80. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2019.03.012
    [32] 姚志洪, 金玉婷, 王思琛, 等. 混入智能网联汽车的交通流稳定性与安全性分析[J]. 中国安全科学学报, 2021, 31(10): 136-143. doi: 10.16265/j.cnki.issn1003-3033.2021.10.019

    YAO Zhi-hong, JIN Yu-ting, WANG Si-chen, et al. Stability and safety analysis on traffic flow mixed with ICV[J]. China Safety Science Journal, 2021, 31(10): 136-143. (in Chinese) doi: 10.16265/j.cnki.issn1003-3033.2021.10.019
    [33] 秦严严, 王昊, 王炜. 网联辅助驾驶混合交通流稳定性及安全性分析[J]. 东南大学学报(自然科学版), 2018, 48(1): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801029.htm

    QIN Yan-yan, WANG Hao, WANG Wei. Analysis on stability and safety for mixed traffic flow with connected auxiliary driving[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 188-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801029.htm
    [34] 李霞, 汪一戈, 崔洪军, 等. 智能网联环境下复杂异质交通流稳定性解析[J]. 交通运输系统工程与信息, 2020, 20(6): 114-120. doi: 10.16097/j.cnki.1009-6744.2020.06.015

    LI Xia, WANG Yi-ge, CUI Hong-jun, et al. Stability analysis of complex heterogeneous traffic flow under connected and autonomous environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 114-120. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2020.06.015
    [35] YU Hai-yang, JIANG Rui, HE Zheng-bing, et al. Automated vehicle-involved traffic flow studies: a survey of assumptions, models, speculations, and perspectives[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103101. doi: 10.1016/j.trc.2021.103101
    [36] MIN Hai-gen, FANG Yu-kun, WU Xia, et al. On-ramp merging strategy for connected and automated vehicles based on complete information static game[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(4): 582-595. doi: 10.1016/j.jtte.2021.07.003
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1393
  • HTML全文浏览量:  831
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回