-
摘要: 针对黄土裸露边坡水土流失严重的问题,总结了黄土边坡坡面防护技术的重要研究成果,梳理了坡面工程防护技术的发展历程,探讨了边坡植被防护技术的主要研究方向与不足,分析了固化黄土的抗剪强度、水稳特性等护坡性能与效果,展望了黄土边坡坡面防护技术未来的研究趋势。研究结果表明:坡面工程防护技术包括圬工防护技术、骨架结构防护技术、土工格室柔性防护技术等,发展历程为圬工作业逐渐精细化,含细分框格的新结构、新材料、新工艺不断涌现;边坡植被防护技术一般从植被天然护坡效应、植生措施、植物选取搭配开展研究与应用,但由于忽略黄土本身较强的水敏性与较差的土壤肥力,导致坡面植被后续生长乏力,无法单纯依靠植被本身进行坡面防护;不同固化材料处理条件下黄土的护坡性能与效果各有特点,尤其生物胶与纤维可在生态效应和长期稳定性方面起到积极协同作用,使得胶-筋固化黄土表现出优良的抗侵蚀效果和土水保持能力,具有较大的应用潜力和前景;明确工程结构、植被、固化黄土一体化的综合生态护坡技术是边坡防护工程发展的必然趋势,同时提出应将固化黄土防脱技术、生态材料修复技术、边坡防护安全生态监测系统、护坡时效性评估方法以及植物搭配景观设计等方面作为未来的重点研究方向。Abstract: To address the serious water and soil erosion on exposed loess slopes, some significant research achievements on the surface protection technologies of loess slope were concluded. The development process of slope engineering protection technologies was outlined. The research directions and shortcomings in slope vegetation protection technologies were discussed. Slope protection performances and effects, such as shear strength and water stability of solidified loess, were analyzed. The future trend of surface protection technologies of loess slope was prospected. Research results show that slope engineering protection technologies include masonry protection, skeleton structure protection, geocell flexible protection, etc. The development process can be described as the gradual refinement of masonry operations, including the emergence of new structures, materials, and technologies on subdivided grids. Slope vegetation protection technologies generally conducts research and application from natural slope protection effect of vegetation, vegetation measures, and plant selection and matching. But it neglects the strong water sensitivity and barren soil fertility of loess, which leads to poor subsequent growth of slope vegetation. Therefore, slope protection cannot rely solely on vegetation. Slope protection performance and effect of loess are different under different curing material treatment conditions. Especially, biopolymers and fiber can play a positive synergistic role in maintaining long-term stability and ecology. Biopolymer-fiber-reinforced loess thus shows excellent anti-erosion effect and soil-water retention ability, which has great application potential and prospect. It is clear that the integrated ecological slope protection technology integrating engineering structure, vegetation, and solidified loess is a foreseeable trend in slope protection engineering. In addition, five areas are taken as the key research directions, including anti-scouring technology of solidified loess, restoration technology of ecological material, safe ecological monitoring system of slope protection, aging evaluation method of slope protection, and landscape design of plant matching.
-
表 1 黄土高原各气候区的植物品种建议
Table 1. Suggestions on plant varieties in different climatic zones of loess plateau
气候区 年降雨量/mm 自然或引种主要植被 Ⅰ温暖带半湿润气候区 430~750 侧柏、槐、刺槐、泡桐、香椿、毛白杨、沙兰杨、旱柳、白榆、水杉、紫穗槐、火炬树、迎春树、枸杞、酸枣、黄背草、白草、箭杆杨、15号杨、尤金杨、臭椿、槐树、柳树、苦楝、楸树、白榆、枣树、花椒、石榴、白腊、辽东栎、麻栎、栓皮栎、油松、白皮松、华山松、山杨、白桦、杜栎、虎榛子、杭子梢、白刺花、沙棘、荆条、酸刺、黄刺梅、扁核木、菅草、狼尾草、大油芒、黑麦草、蒿类、苜蓿等 Ⅱ温暖带半干旱气候区 450~570 旱柳、河蒴尧花、达乌里胡枝子、忍冬、多花栒子、丁香、三桠绣线菊、沙棘、紫穗槐、柠条、柽柳、文冠果、杞柳、蒿类、白羊草、本氏羽茅、苜蓿等 Ⅲ中温带半湿润气候区 440~700 油松、侧柏、辽东栎、桦木、沙棘、狼牙刺、虎榛子、山樱桃、山桃、杠柳、文冠果、卫茅、栒子木、黄刺梅、胡枝子、荆条、忍冬、丁香、酸枣、杜梨、白草、马牙草、蒿类、多裂委陵菜、本氏羽茅、山杨、白桦、山毛桃、锦鸡儿、榛子、白蒿、百里香、铁干蒿、黄背草、冷蒿、龙胆、华山松、白皮松、灰栒子、珍珠梅、黄刺梅、锦鸡儿、细叶苔、紫花针茅、茵陈嵩、青杄、青杨、旱柳等;人工栽培的有刺槐、泡桐、楸树、臭椿、小叶杨、毛白杨、河北杨、沙兰杨、青杨、槐树、灰楸、白榆、苜蓿等 Ⅳ中温带半干旱气候区 252~430 黄土丘陵有羊草、糙隐子草、本氏羽茅、克氏针茅、扁茎黄芩、甘草、硬质早熟禾;晋西以沙棘、针茅、蒿类为主;天然分布的有山桃、扁核木、矮锦鸡儿、柠条、沙棘、丁香、狼牙刺、达乌里胡枝子、百里香、嵩类、大针茅、冰草、短花针茅、翻白草、铁杆蒿、多列委陵菜、龙胆、柽柳、野枸杞;人工栽培的有沙棘、锦鸡儿、臭椿、旱柳、柽柳、沙棘、山毛桃、杞柳、青杨、柳、荒漠锦鸡儿、白刺、针茅、冰草、芨芨草、狼毒、针茅、骆驼刺、柠条、杨树、旱柳、百榆、金露梅、化香、栒子、沙棘、苜蓿等 Ⅴ中温带干旱气候区 185~204 黄土丘陵有红砂、猫儿刺、盐抓抓、本氏羽茅、针茅、簇蒿、铁杆蒿、小黄菊、三裂艾菊、鹅冠草、芨芨草、白刺;人工栽培的有槐树、银白杨、白榆、臭椿、旱柳等 表 2 素黄土与固化黄土的典型护坡特性对比
Table 2. Comparison of typical slope protection characteristics between plain loess and solidified loess
土样名称 纤维掺量/ % 纤维长度/ mm 瓜尔豆胶掺量/% 黏聚力/ kPa 内摩擦角/ (°) 崩解率/ % 渗透系数/ (cm·s-1) 裂隙率/ % 素黄土 18.43 28.31 100 5.59×10-6 2.556 5 纤维加筋黄土 0.5 15 36.99 31.00 59 1.19×10-5 0.268 6 胶结固化黄土 1.0 45.92 30.30 15 8.90×10-7 4.836 5 胶-筋固化黄土 0.5 15 1.0 57.64 31.60 9 2.34×10-6 0.198 3 -
[1] YU Shi-yong, LI Wen-jia, ZHOU Liang, et al. Human disturbances dominated the unprecedentedly high frequency of Yellow River flood over the last millennium[J]. Science Advances, 2023, 9(8): eadf8576. [2] 卢浩. 陇东黄土路堑边坡侵蚀机理与防护技术研究[D]. 西安: 长安大学, 2019.LU Hao. Study on erosion mechanism and protection technology of loess cutting slope in Long-Dong[D]. Xi'an: Chang'an University, 2019. (in Chinese) [3] 袁航. 陇东黄土各向异性研究及在边坡量化加固中的应用[D]. 西安: 长安大学, 2018.YUAN Hang. Study of the anisotropy of loess in eastern Gansu and its application in quantitative reinforcement of slope[D]. Xi'an: Chang'an University, 2018. (in Chinese) [4] 彭建兵, 段钊. 听黄土粒儿说滑坡[J]. 自然杂志, 2018, 40(4): 285-289. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804010.htmPENG Jian-bing, DUAN Zhao. Landslides in the words of little loess-grain[J]. Chinese Journal of Nature, 2018, 40(4): 285-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804010.htm [5] 沈波. 山区公路排水系统灾害评价方法及指标体系研究[D]. 西安: 长安大学, 2006.SHEN Bo. Study on the risk evaluation of rainfall drainage system of mountainous highway[D]. Xi'an: Chang'an University, 2006. (in Chinese) [6] KOU Ping-lang, XU Qiang, YUNUS A P, et al. Micro-topographic assessment of rill morphology highlights the shortcomings of current protective measures in loess landscapes[J]. Science of the Total Environment, 2020, 737: 139721. doi: 10.1016/j.scitotenv.2020.139721 [7] BAO Xiao-hua, LIAO Wen-yu, DONG Zhi-jun, et al. Development of vegetation-pervious concrete in grid beam system for soil slope protection[J]. Materials, 2017, DOI: 10.3390/ma10020096. [8] 蒙超荣, 冯忠居, 胡明华, 等. 边坡人字形骨架防护骨架尖角设计研究[J]. 公路, 2017, 62(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201705012.htmMENG Chao-rong, FENG Zhong-ju, HU Ming-hua, et al. Study of design for herringbone skeleton sharp angle of side slope protection[J]. Highway, 2017, 62(5): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201705012.htm [9] 连继峰, 罗强, 蒋良潍, 等. 矩形骨架防护路基边坡浅层稳定性及优化设计[J]. 岩土工程学报, 2016, 38(增2): 228-233. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2037.htmLIAN Ji-feng, LUO Qiang, JIANG Liang-wei, et al. Shallow stability of subgrade slopes protected by rectangular frame structures and structural optimization[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 228-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2037.htm [10] LIAN Ji-feng, WU Jiu-jiang. Shallow stability and parameter sensitivity analysis of soil slope with frame protection under rainfall seepage[J]. Scientific Reports, 2021, 11: 19607. doi: 10.1038/s41598-021-99181-4 [11] 连继峰, 罗强, 谢涛, 等. 路基边坡浅层稳定的骨架防护效应及结构优化[J]. 铁道学报, 2017, 39(7): 133-141. doi: 10.3969/j.issn.1001-8360.2017.07.019LIAN Ji-feng, LUO Qiang, XIE Tao, et al. Mechanics effects of frame protection for shallow stability of soil slope and frame structure optimization[J]. Journal of the China Railway Society, 2017, 39(7): 133-141. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.07.019 [12] 徐利鑫. 拱形预制块骨架护坡结构试验研究及数值分析[D]. 湘潭: 湖南科技大学, 2015.XU Li-xin. Experimental study and numerical simulation analysis on prefabricated arch skeleton of slope protection structure[D]. Xiangtan: Hunan University of Science and Technology, 2015. (in Chinese) [13] 肖玉辉, 段劲, 胡静轩, 等. 平接缝预制块拱形骨架护坡应力位移监测研究[J]. 公路工程, 2017, 42(1): 170-173. doi: 10.3969/j.issn.1674-0610.2017.01.038XIAO Yu-hui, DUAN Jin, HU Jing-xuan, et al. The stress and displacement monitoring research for flat seam concrete block arch frame[J]. Highway Engineering, 2017, 42(1): 170-173. (in Chinese) doi: 10.3969/j.issn.1674-0610.2017.01.038 [14] 魏静, 许兆义, 葛建军, 等. 青藏铁路路基预制拼装式骨架护坡试验分析[J]. 岩石力学与工程学报, 2006, 25(2): 329-333. doi: 10.3321/j.issn:1000-6915.2006.02.018WEI Jing, XU Zhao-yi, GE Jian-jun, et al. Experimental analysis of embankment with prefab framework slope protection of Qinghai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 329-333. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.02.018 [15] 何凡, 江玉林, 尹婧, 等. 西北半干旱区不同防护条件下公路边坡风力侵蚀研究[J]. 中国水土保持科学, 2007, 5(5): 37-42, 55. doi: 10.16843/j.sswc.2007.05.007HE Fan, JIANG Yu-lin, YIN Jing, et al. Research on regular of wind erosion on road slope under different protection in semi-arid area of northwest China[J]. Science of S oil and Water Conservation, 2007, 5(5): 37-42, 55. (in Chinese) doi: 10.16843/j.sswc.2007.05.007 [16] 来弘鹏, 谢永利, 杨晓华. 西汉高速公路膨胀土堑坡浅层稳定性研究[J]. 武汉理工大学学报, 2010, 32(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201001008.htmLAI Hong-peng, XIE Yong-li, YANG Xiao-hua. Research on shallow layer stability of cutting slope with expansive soil in Xi-Han highway[J]. Journal of Wuhan University of Technology, 2010, 32(1): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201001008.htm [17] 王昊, 杜晓燕, 叶阳升, 等. 异型纤维土六棱砖骨架护坡技术研究[J]. 铁道建筑, 2017, 57(9): 100-103. doi: 10.3969/j.issn.1003-1995.2017.09.25WANG Hao, DU Xiao-yan, YE Yang-sheng, et al. Research on slope protection technique using hexagonal brick skeleton filled with heterotype fiber soil[J]. Railway Engineering, 2017, 57(9): 100-103. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.09.25 [18] 陶悦. 降雨条件下拱形骨架防护边坡浅层破坏及防治措施研究[D]. 西安: 长安大学, 2019.TAO Yue. Shallow layer failure and controlling measures of slope protected by arch frame under rainfall conditions[D]. Xi'an: Chang'an University, 2019. (in Chinese) [19] 原泽, 晏长根, 陶悦, 等. 骨架防护黄土边坡坡面冲蚀模型试验研究[J]. 工程地质学报, https://kns.cnki.net/kcms/detail/11.3249.P.20220623.1507.007.html. doi: 10.13544/j.cnki.jeg.2022-0118YUAN Ze, YAN Chang-gen, TAO Yue, et al. Erosion model test of loess slope with the framework protection[J]. Journal of Engineering Geology, https://kns.cnki.net/kcms/detail/11.3249.P.20220623.1507.007.html. (in Chinese) doi: 10.13544/j.cnki.jeg.2022-0118 [20] MHAISKAR S Y, MANDAL J N. Investigations on soft clay subgrade strengthening using geocells[J]. Construction and Building Materials, 1996, 10(4): 281-286. doi: 10.1016/0950-0618(95)00083-6 [21] MADHAVI LATHA G, MANJU G S. Seismic response of geocell retaining walls through shaking table tests[J]. International Journal of Geosynthetics and Ground Engineering, 2016, DOI: 10.1007/s40891-016-0048-4. [22] 晏长根, 杨晓华, 石玉玲, 等. 土工格室在黄土边坡公路中的试验研究及应用[J]. 岩石力学与工程学报, 2006, 25(增1): 3235-3238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1098.htmYAN Chang-gen, YANG Xiao-hua, SHI Yu-ling, et al. Testing and application of geocell in loess slopes of highway[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3235-3238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1098.htm [23] 鲁志方, 杨晓华, 晏长根. 土工格室植被护坡防膨胀土边坡开裂机理研究[J]. 公路, 2016, 61(4): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201604006.htmLU Zhi-fang, YANG Xiao-hua, YAN Chang-gen. Research on cracking mechanism of expansive soil slope with geo-cells flexible retaining wall[J]. Highway, 2016, 61(4): 23-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201604006.htm [24] TANYU B F, AYDILEK A H, LAU A W, et al. Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades[J]. Geosynthetics International, 2013, 20(2): 47-61. doi: 10.1680/gein.13.00001 [25] MEHDIPOUR I, GHAZAVI M, MOAYED R Z. Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect[J]. Geotextiles and Geomembranes, 2013, 37: 23-34. doi: 10.1016/j.geotexmem.2013.01.001 [26] 王炳龙, 周顺华, 宫全美, 等. 不同高度土工格室整治基床下沉病害的试验研究[J]. 岩土工程学报, 2003, 25(2): 163-166. doi: 10.3321/j.issn:1000-4548.2003.02.008WANG Bing-long, ZHOU Shun-hua, GONG Quan-mei, et al. Experimental study on treatment of subgrade subsidence by geocell of different heights[J]. Chinese Jounal of Geotechnical Engineering, 2003, 25(2): 163-166. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.02.008 [27] 韩宇琨, 卢正, 姚海林, 等. 土工格室加固边坡抗冲刷性研究[J]. 岩石力学与工程学报, 2021, 40(增2): 3425-3433. doi: 10.13722/j.cnki.jrme.2020.1197HAN Yu-kun, LU Zheng, YAO Hai-lin, et al. Study on erosion resistance of geocell reinforced slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3425-3433. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.1197 [28] 宋飞, 谢永利, 杨晓华, 等. 填土面作用荷载时土工格室柔性挡墙破坏模式研究[J]. 岩土工程学报, 2013, 35(增1): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1024.htmSONG Fei, XIE Yong-li, YANG Xiao-hua, et al. Failure mode of geocell flexible retaining wall with surcharge acting on backfill surface[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 152-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1024.htm [29] 屈战辉, 谢永利, 袁福发, 等. 土工格室柔性挡墙极限主动土压力计算方法[J]. 交通运输工程学报, 2010, 10(1): 24-28, 35. doi: 10.3969/j.issn.1671-1637.2010.01.005QU Zhan-hui, XIE Yong-li, YUAN Fu-fa, et al. Calculation method of active earth pressure under limit state for geocell flexible retaining wall[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 24-28, 35. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.01.005 [30] 晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17-24. doi: 10.19721/j.cnki.1001-7372.2017.10.003YAN Chang-gen, GU Liang-jun, YANG Xiao-hua, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17-24. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2017.10.003 [31] 晏长根, 杨晓华, 谢永利, 等. 土工格室对黄土路堤边坡抗冲刷的试验研究[J]. 岩土力学, 2005, 26(8): 1342-1344, 1348. doi: 10.3969/j.issn.1000-7598.2005.08.030YAN Chang-gen, YANG Xiao-hua, XIE Yong-li, et al. Experimental research on anti-eroding effect of geocells in loess embankment[J]. Rock and Soil Mechanics, 2005, 26(8): 1342-1344, 1348. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.08.030 [32] KOHNKE R E, BOLLER A K. Soil bioengineering for streambank protection[J]. Journal of Soil and Water Conservation, 1989, 44(4): 286-287. [33] 陈强, 韩军, 刘自楷, 等. 武汉绕城高速公路生态防护膨胀土边坡失稳的几种形式及加固处理[J]. 岩石力学与工程学报, 2006, 25(增2): 4040-4045. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2109.htmCHEN Qiang, HAN Jun, LIU Zi-kai, et al. Several failure modes and treatment of ecological protection of expansive soil slope in expressway around Wuhan[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 4040-4045. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2109.htm [34] WU L Z, ZHOU Y, SUN P, et al. Laboratory characterization of rainfall-induced loess slope failure[J]. Catena, 2017, 150: 1-8. doi: 10.1016/j.catena.2016.11.002 [35] 杨晓华, 王文生. 土工格室生态护坡在黄土地区公路边坡防护中的应用[J]. 公路, 2004(8): 179-182. doi: 10.3969/j.issn.0451-0712.2004.08.043YANG Xiao-hua, WANG Wen-sheng. Application of geocell ecological slope protection in the protection of highway slope in loess area[J]. Highway, 2004(8): 179-182. (in Chinese) doi: 10.3969/j.issn.0451-0712.2004.08.043 [36] 谢永利, 刘新荣, 晏长根, 等. 特殊岩土体工程边坡研究进展[J]. 土木工程学报, 2020, 53(9): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202009011.htmXIE Yong-li, LIU Xin-rong, YAN Chang-gen, et al. Research progress of special soil and rock engineering slopes[J]. China Civil Engineering Journal, 2020, 53(9): 93-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202009011.htm [37] 王文生, 杨晓华, 谢永利. 公路边坡植物的护坡机理[J]. 长安大学学报(自然科学版), 2005, 25(4): 26-30. doi: 10.3321/j.issn:1671-8879.2005.04.007WANG Wen-sheng, YANG Xiao-hua, XIE Yong-li. Mechanism of biotechnichal protection for highway slope[J]. Journal of Chang'an University (Natural Science Edition), 2005, 25(4): 26-30. (in Chinese) doi: 10.3321/j.issn:1671-8879.2005.04.007 [38] 李强. 黄土丘陵区植物根系强化土壤抗冲性机理及固土效应[D]. 北京: 中国科学院大学, 2014.LI Qiang. Mechanism of plant roots in improving resistance of soil to concentrated flow erosion and reinforcement in loess hilly region[D]. Beijing: University of Chinese Academy of Sciences, 2014. (in Chinese) [39] 王可钧, 李焯芬. 植物固坡的力学简析[J]. 岩石力学与工程学报, 1998, 17(6): 687-691. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199806012.htmWANG Ke-jun, LI Chao-fen. Brief mechanics analysis on bioengineering techniques for slope protection[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 687-691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199806012.htm [40] 张俊云, 周德培, 李绍才. 岩石边坡生态护坡研究简介[J]. 水土保持通报, 2000, 20(4): 36-38. doi: 10.13961/j.cnki.stbctb.2000.04.010ZHANG Jun-yun, ZHOU De-pei, LI Shao-cai. Brief introduction of study on slope eco engineering for rock slope protection[J]. Bulletin of Soil and Water Conservation, 2000, 20(4): 36-38. (in Chinese) doi: 10.13961/j.cnki.stbctb.2000.04.010 [41] 江锋, 张俊云. 植物根系与边坡土体间的力学特性研究[J]. 地质灾害与环境保护, 2008, 19(1): 57-61. doi: 10.3969/j.issn.1006-4362.2008.01.013JIANG Feng, ZHANG Jun-yun. Interactional mechanical characteristics between plant roots and slope soil[J]. Journal of Geological Hazards and Environment Preservation, 2008, 19(1): 57-61. (in Chinese) doi: 10.3969/j.issn.1006-4362.2008.01.013 [42] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201403009.htmWU Lin-kun, LIN Xiang-min, LIN Wen-xiong. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201403009.htm [43] LIAN Bao-qin, PENG Jian-bing, ZHAN Hong-bin, et al. Mechanical response of root-reinforced loess with various water contents[J]. Soil and Tillage Research, 2019, 193: 85-94. doi: 10.1016/j.still.2019.05.025 [44] 曹云生, 陈丽华, 盖小刚, 等. 油松根系的固土力学机制[J]. 水土保持通报, 2014, 34(5): 6-10, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201405003.htmCAO Yun-sheng, CHEN Li-hua, GAI Xiao-gang, et al. Soil reinforcement by pinus tabuliformis roots[J]. Bulletin of Soil and Water Conservation, 2014, 34(5): 6-10, 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201405003.htm [45] LI Peng-cheng, XIAO Xue-pei, WU Li-zhou, et al. Study on the shear strength of root-soil composite and root reinforcement mechanism[J]. Forests, 2022, 13(6): 898. [46] 郑力. 植物根系的加筋与锚固作用对边坡稳定性的影响[D]. 重庆: 西南大学, 2018.ZHENG Li. Effect of reinforcement and anchorage of plant roots on slope stability[D]. Chongqing: Southwest University, 2018. (in Chinese) [47] 扈萍, 宋修广, 吴登高. 高速公路边坡植草护坡的根固效应试验研究[J]. 岩土力学, 2008, 29(2): 442-444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802048.htmHU Ping, SONG Xiu-guang, WU Deng-gao. Expermental research on reinforcement mechanism of expressway slope protection with greensward[J]. Rock and Soil Mechanics, 2008, 29(2): 442-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802048.htm [48] 吴宏伟. 大气-植被-土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htmNG C W W. Atmosphere-plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htm [49] MCELRONE A J, CHOAT B, GAMBETTA G A, et al. Water uptake and transport in vascular plants[J]. Nature Education Knowledge, 2013, 4(5): 1-3. [50] 周云艳, 陈建平, 王晓梅. 植物根系固土护坡机理的研究进展及展望[J]. 生态环境学报, 2012, 21(6): 1171-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201206030.htmZHOU Yun-yan, CHEN Jian-ping, WANG Xiao-mei. Progress of study on soil reinforcement mechanisms by root and its expectation[J]. Ecology and Environmental Sciences, 2012, 21(6): 1171-1177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201206030.htm [51] 邵蕊. 黄土高原大规模植被恢复的区域蒸散耗水规律及其生态水文效应[D]. 兰州: 兰州大学, 2020.SHAO Rui. Effects of large-scale vegetation restoration on evaporative water consumption and eco-hydrological process over the loess plateau, China[D]. Lanzhou: Lanzhou University, 2020. (in Chinese) [52] 戚国庆, 胡利文. 植被护坡机制及应用研究[J]. 岩石力学与工程学报, 2006, 25(11): 2220-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200611010.htmQI Guo-qing, HU Li-wen. Study on mechanism and application of slope protection with vegetation[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2220-2225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200611010.htm [53] LUKI AC'G T, BJELAJAC D, FITZSIMMONS K E, et al. Factors triggering landslide occurrence on the Zemun loess plateau, Belgrade area, Serbia[J]. Environmental Earth Sciences, 2018, 77(13): 519. [54] HUBBLE T, CLARKE S, STOKES A, et al. 4th international conference on soil bio-and eco-engineering (SBEE2016) 'the use of vegetation to improve slope stability'[J]. Ecological Engineering, 2017, 109: 141-144. [55] 李姜瑶. 西宁盆地黄土区植物水文效应及其增强边坡稳定性评价[D]. 西宁: 中国科学院青海盐湖研究所, 2021.LI Jiang-yao. The evaluation of plants hydrological effect and slope stability contribution in the loess area of Xining basin[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2021. (in Chinese) [56] GENET M, STOKES A, FOURCAUD T, et al. The influence of plant diversity on slope stability in a moist evergreen deciduous forest[J]. Ecological Engineering, 2010, 36(3): 265-275. [57] 朱海丽, 毛小青, 倪三川, 等. 植被护坡研究进展与展望[J]. 中国水土保持, 2007(4): 26-29, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200704011.htmZHU Hai-li, MAO Xiao-qing, NI San-chuan, et al. Progress of study on slope protection by vegetation and its expectation[J]. Soil and Water Conservation in China, 2007(4): 26-29, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200704011.htm [58] SHI L, ZHANG Z J, ZHANG C Y, et al. Effects of sand burial on survival, growth, gas exchange and biomass allocation of ulmus pumila seedlings in the hunshandak sandland, China[J]. Annals of Botany, 2004, 94(4): 553-560. [59] 赵之胜, 李子清, 谢永利, 等. 黄土地区公路高边坡防护技术研究[R]. 西安: 陕西省公路勘察设计院, 2005.ZHAO Zhi-sheng, LI Zi-qing, XIE Yong-li, et al. Research on protection technology of highway high slope in loess area[R]. Xi'an: Shaanxi Provincial Highway Survey and Design Institute, 2005. (in Chinese) [60] 刘海松, 倪万魁, 杨泓全, 等. 降雨冲刷对黄土公路边坡植物防护影响的试验研究[J]. 工程地质学报, 2007, 15(4): 527-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200704017.htmLIU Hai-song, NI Wan-kui, YANG Hong-quan, et al. A field test of rainfall erosion on loess-highway-slope with plant protection[J]. Journal of Engineering Geology, 2007, 15(4): 527-533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200704017.htm [61] ZHANG Ling, WANG Jin-man, BAI Zhong-ke, et al. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area[J]. Catena, 2015, 128: 44-53. [62] ZHANG Xuan-chang, LI Yu-rui, LIU Yan-sui, et al. Characteristics and prevention mechanisms of artificial slope instability in the Chinese loess plateau[J]. Catena, 2021, 207: 105621. [63] 张宝森, 荆学礼, 何丽. 三维植被网技术的护坡机理及应用[J]. 中国水土保持, 2001(3): 34-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200103016.htmZHANG Bao-sen, JING Xue-li, HE Li. Slope protection mechanism and application of 3D vegetation network technology[J]. Soil and Water Conservation in China, 2001(3): 34-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200103016.htm [64] 钟春欣, 张玮, 王树仁. 三维植被网加筋草皮坡面土壤侵蚀试验研究[J]. 河海大学学报(自然科学版), 2007, 35(3): 258-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200703004.htmZHONG Chun-xin, ZHANG Wei, WANG Shu-ren. Experimental research on soil erosion of turf slope reinforced by 3D vegetation net[J]. Journal of Hohai University (Natural Sciences), 2007, 35(3): 258-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200703004.htm [65] 杨晴雯, 裴向军, 吴梦秋, 等. 不同加固技术在散粒体斜坡表层的应用对比研究[J]. 水文地质工程地质, 2019, 46(1): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901019.htmYANG Qing-wen, PEI Xiang-jun, WU Meng-qiu, et al. Research on the effect of different reinforcement methods on the surface of a granular slope[J]. Hydrogeology and Engineering Geology, 2019, 46(1): 139-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901019.htm [66] 胡林, 王琦, 单永体, 等. 青藏高原不同植被措施下公路边坡产流产沙特征[J]. 交通运输工程学报, 2016, 16(4): 96-103. doi: 10.19818/j.cnki.1671-1637.2016.04.010HU Lin, WANG Qi, SHAN Yong-ti, et al. Characteristics of runoff and sediment yields for highway slope under different vegetation measures in Qinghai-Tibet plateau[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 96-103. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.010 [67] BISCHETTI G B, DE CESARE G, MICKOVSKI S B, et al. Design and temporal issues in soil bioengineering structures for the stabilisation of shallow soil movements[J]. Ecological Engineering, 2021, 169: 106309. [68] 单永体, 胡林, 王琦, 等. 径流冲刷对高寒高海拔地区高等级公路边坡侵蚀的影响[J]. 交通运输工程学报, 2016, 16(4): 88-95. doi: 10.19818/j.cnki.1671-1637.2016.04.009SHAN Yong-ti, HU Lin, WANG Qi, et al. Impacts of runoff scouring on high-grade highway slope erosion in alpine and high-altitude regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 88-95. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.009 [69] 肖成志, 孙建诚, 李雨润, 等. 三维土工网垫植草护坡防坡面径流冲刷的机制分析[J]. 岩土力学, 2011, 32(2): 453-458. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102027.htmXIAO Cheng-zhi, SUN Jian-cheng, LI Yu-run, et al. Mechanism analysis of ecological slope protection against runoff erosion by grass jetting on 3D geomat[J]. Rock and Soil Mechanics, 2011, 32(2): 453-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102027.htm [70] 肖成志, 孙建诚, 刘熙媛, 等. 三维土工网垫植草护坡性能试验[J]. 重庆大学学报, 2010, 33(8): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008020.htmXIAO Cheng-zhi, SUN Jian-cheng, LIU Xi-yuan, et al. Experimental study of properties of slope protection through grass jetting on 3D geomat[J]. Journal of Chongqing University, 2010, 33(8): 96-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201008020.htm [71] 王广月, 王云, 孙国瑞. 三维土工网防护边坡整体稳定性分析[J]. 防灾减灾工程学报, 2017, 37(6): 863-870. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201706002.htmWANG Guang-yue, WANG Yun, SUN Guo-rui. Analysis of the overall stability of the three dimensional geonet protected slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(6): 863-870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201706002.htm [72] WANG Xiu-hong, LU Chang-he, FANG Jin-fu, et al. Implications for development of grain-for-green policy based on cropland suitability evaluation in desertification-affected north China[J]. Land Use Policy, 2007, 24(2): 417-424. [73] ZHUANG Jian-qi, PENG Jian-bing, WANG Gong-hui, et al. Distribution and characteristics of landslide in loess plateau: a case study in Shaanxi province[J]. Engineering Geology, 2018, 236: 89-96. [74] 王春香, 张建军, 茹豪, 等. 晋西黄土区刺槐林下植被物种组成及多样性影响因素[J]. 东北林业大学学报, 2014, 42(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201401008.htmWANG Chun-xiang. ZHANG Jian-jun, RU Hao, et al. Factors of composition and diversity of undergrowth vegetation species of robinia pseudoacacia forests in loess region of western Shanxi province[J]. Journal of Northeast Forestry University, 2014, 42(1): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201401008.htm [75] 陈文思, 朱清科, 刘蕾蕾, 等. 陕北半干旱黄土区沙棘人工林的死亡率及适宜地形因子[J]. 林业科学, 2016, 52(5): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201605002.htmCHEN Wen-si, ZHU Qing-ke, LIU Lei-lei, et al. Mortality and appropriate topographical conditions of sea buckthorn plantation in semi-arid region of loess plateau in north Shaanxi, China[J]. Scientia Silvae Sinicae, 2016, 52(5): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201605002.htm [76] 方书敏, 赵传燕, 荐圣淇, 等. 陇中黄土高原油松人工林林冠截留特征及模拟[J]. 应用生态学报, 2013, 24(6): 1509-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201306006.htmFANG Shu-min, ZHAO Chuan-yan, JIAN Sheng-qi, et al. Canopy interception of pinus tabulaeformis plantation on Longzhong loess plateau, northwest China: characteristics and simulation[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1509-1516. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201306006.htm [77] 张文文, 郭忠升, 宁婷, 等. 黄土丘陵半干旱区柠条林密度对土壤水分和柠条生长的影响[J]. 生态学报, 2015, 35(3): 725-732. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201503016.htmZHANG Wen-wen, GUO Zhong-sheng, NING Ting, et al. The effects of plant density on soil water and plant growth on semi-arid loess hilly region[J]. Acta Ecologica Sinica, 2015, 35(3): 725-732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201503016.htm [78] 张莎莎, 杨晓华, 李凌姜. 黄土地区道路陡边坡植被多样性生态防护措施[J]. 公路交通科技, 2013, 30(6): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201306026.htmZHANG Sha-sha, YANG Xiao-hua, LI Ling-jiang. Ecological protection measures of vegetation diversity for road steep slope in loess region[J]. Journal of Highway and Transportation Research and Development, 2013, 30(6): 153-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201306026.htm [79] 许金良, 王荣华, 冯志慧, 等. 基于动视觉特性的高速公路景观敏感区划分[J]. 交通运输工程学报, 2015, 15(2): 1-9. doi: 10.19818/j.cnki.1671-1637.2015.02.001XU Jin-liang, WANG Rong-hua, FENG Zhi-hui, et al. Classification of expressway landscape sensitive zone based on dynamic visual characteristics[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.02.001 [80] WANG Ning, JIAO Ju-ying, JIA Yan-feng, et al. Seed persistence in the soil on eroded slopes in the hilly-gullied loess plateau region, China[J]. Seed Science Research, 2011, 21(4): 295-304. [81] 雷胜友, 文晓灿. 不同瓣型荞麦壳加筋黄土的强度特性[J]. 土木与环境工程学报(中英文), 2022, 44(5): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205013.htmLEI Sheng-you, WEN Xiao-can. Experimental study on the strength characteristics of reinforced loess with different petal-shaped buckwheat husks[J]. Journal of Civil and Environmental Engineering, 2022, 44(5): 118-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205013.htm [82] KAFODYA I, OKONTA F. Effect of fibre surface coating on the mechanical properties of natural fibre-reinforced soil[J]. International Journal of Geotechnical Engineering, 2021, 15(3): 338-348. [83] 卢浩, 晏长根, 杨晓华, 等. 麦秆纤维加筋土的抗冲蚀性及其防护效果试验研究[J]. 铁道科学与工程学报, 2017, 14(10): 2138-2145. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201710015.htmLU Hao, YAN Chang-gen, YANG Xiao-hua, et al. Experimental research on anti-eroding property and protection effect of reinforced soil with straw fibers[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2138-2145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201710015.htm [84] XU Jian, WU Zhi-peng, CHEN Hui, et al. Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology[J]. KSCE Journal of Civil Engineering, 2021, 25(10): 3714-3726. [85] 褚峰, 邵生俊, 邓国华, 等. 纤维纱加筋黄土一维蠕变特性试验研究[J]. 岩石力学与工程学报, 2022, 41(5): 1054-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205016.htmCHU Feng, SHAO Sheng-jun, DENG Guo-hua, et al. Experimental study on one dimensional creep behavior of loess reinforced with fiber yarn[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 1054-1066. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205016.htm [86] 褚峰, 邵生俊, 陈存礼, 等. 纤维纱加筋黄土力学变形特性及本构模型研究[J]. 工程地质学报, https://kns.cnki.net/kcms/detail/11.3249.P.20211110.1910.004.html. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202303027.htmCHU Feng, SHAO Sheng-jun, CHEN Cun-li, et al. Study on mechanical deformation characteristics and constitutive model of fiber yarn reinforced loess[J]. Journal of Engineering Geology, https://kns.cnki.net/kcms/detail/11.3249.P.20211110.1910.004.html. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202303027.htm [87] 唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htmTANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htm [88] 王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933-1940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htmWANG De-yin, TANG Chao-sheng, LI Jian, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933-1940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm [89] TANG Chao-sheng, SHI Bin, GAO Wei, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-202. [90] 曾军, 彭学先, 阮波, 等. 聚丙烯纤维红黏土无侧限抗压强度试验研究[J]. 铁道科学与工程学报, 2015, 12(3): 545-550. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201503015.htmZENG Jun, PENG Xue-xian, RUAN Bo, et al. Experimental study on unconfined compressive strength of polypropylene fiber reinforced red clay[J]. Journal of Railway Science and Engineering, 2015, 12(3): 545-550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201503015.htm [91] 安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htmAN Ning, YAN Chang-gen, WANG Ya-chong, et al. Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501-510. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102022.htm [92] 卢浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82-92. doi: 10.19818/j.cnki.1671-1637.2021.02.007LU Hao, YAN Chang-gen, JIA Zhuo-long, et al. Shear strength and disintegration properties of polypropylene fiber-reinforced loess[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82-92. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.02.007 [93] 李博. 胶-筋固化黄土边坡生态防护性能试验研究[D]. 西安: 长安大学, 2020.LI Bo. Experimental study on ecological protection performance of loess slope solidified by gum and fiber[D]. Xi'an: Chang'an University, 2020. (in Chinese) [94] SU Jing, QIU Yan-hua, YANG Xiao-song, et al. Dose-effect relationship of water salinity levels on osmotic regulators, nutrient uptake, and growth of transplanting vetiver[J]. Plants, 2021, 10(3): 562. [95] 汪勇, 刘瑾, 张达, 等. 高分子固化剂加固土质边坡的稳定性分析[J]. 河北工程大学学报(自然科学版), 2016, 33(4): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201604004.htmWANG Yong, LIU Jin, ZHANG Da, et al. Stability analysis of soil slope reinforced by polymer curing agen[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2016, 33(4): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201604004.htm [96] 王生俊, 韩文峰, 王银梅. LD岩土胶结剂加固黄土试验研究[J]. 岩石力学与工程学报, 2003(增2): 2888-2893. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2072.htmWANG Sheng-jun, HAN Wen-feng, WANG Yin-mei. Testing study on loess consolidated by LD serial rock-soil cemedin[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(S2): 2888-2893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2072.htm [97] 程佳明. 新型固化剂加固黄土边坡技术试验研究[D]. 太原: 太原理工大学, 2014.CHENG Jia-ming. Experimental study on technique of the loess slope reinforcement by new soil stabilizer[D]. Taiyuan: Taiyuan University of Technology, 2014. (in Chinese) [98] 贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htmHE Zhi-qiang, FAN Heng-hui, WANG Jun-qiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm [99] SUJATHA E R, SAISREE S. Geotechnical behaviour of guar gum-treated soil[J]. Soils and Foundations, 2019, 59(6): 2155-2166. [100] 穆鹏雪. 瓜尔豆胶固化黄土的性能实验研究[D]. 西安: 长安大学, 2019.MU Peng-xue. Experimental study on protection performance of guar gum reinforced loess slope[D]. Xi'an: Chang'an University, 2019. (in Chinese) [101] 杨万里, 石玉玲, 穆鹏雪, 等. 瓜尔豆胶固化黄土的工程特性及抗冲蚀试验研究[J]. 水文地质工程地质, 2022, 49(4): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202204014.htmYANG Wan-li, SHI Yu-ling, MU Peng-xue, et al. An experimental study of the engineering properties and erosion resistance of guar gum-reinforced loess[J]. Hydrogeology and Engineering Geology, 2022, 49(4): 117-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202204014.htm [102] 张丽萍. 黄土边坡坡面稳定及防治技术研究[D]. 杨凌: 西北农林科技大学, 2009.ZHANG Li-ping. Researches on loess slope stability and prevention strategies[D]. Yangling: Northwest Agriculture and Forestry University, 2009. (in Chinese) [103] MITCHELL J K. Soil improvement-state of the art report[C]// ISSMGE. Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. London: ISSMGE, 1981: 509-565. [104] 吴梦秋. 纤维加强型松散边坡坡面防护新材料研究[D]. 成都: 成都理工大学, 2016.WU Meng-qiu. Research on fiber reinforced polymer composite protective material of loose slope[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese) [105] CARRUTH W D, HOWARD I L. Use of portland cement and polymer fibers to stabilize very high moisture content fine-grained soils[J]. Advances in Civil Engineering Materials, 2013, 2(1): 2012006. [106] 王亚冲. 聚丙烯纤维加筋土抗侵蚀性能及其在边坡防护中的应用研究[D]. 西安: 长安大学, 2019.WANG Ya-chong. Study on anti-erosion properties and application in slope protection of polypropylene fiber reinforced soil[D]. Xi'an: Chang'an University, 2019. (in Chinese) [107] VOLIKOV A B, KHOLODOV V A, KULIKOVA N A, et al. Silanized humic substances act as hydrophobic modifiers of soil separates inducing formation of water-stable aggregates in soils[J]. Catena, 2016, 137: 229-236. [108] 贾卓龙, 晏长根, 李博, 等. 瓜尔豆胶固化纤维黄土的抗侵蚀特性及生态护坡试验研究[J]. 岩土工程学报, 2022, 44(10): 1881-1889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210014.htmJIA Zhuo-long, YAN Chang-gen, LI Bo, et al. Experimental study on erosion resistance and ecological slope protection of guar gum treated fiber-reinforcement loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1881-1889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210014.htm [109] 毛云程, 张得文, 李国玉, 等. 黄土路堑边坡植物纤维防护效果试验研究[J]. 防灾减灾工程学报, 2014, 34(5): 601-605. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405011.htmMAO Yun-cheng, ZHANG De-wen, LI Guo-yu, et al. Study on plant fiber protection on expressway cutting slope in loess area[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 601-605. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405011.htm [110] 单志杰, 张兴昌, 赵伟霞, 等. EN-1固化剂对土壤抗蚀性的影响[J]. 水土保持学报, 2010, 24(5): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005002.htmSHAN Zhi-jie, ZHANG Xing-chang, ZHAO Wei-xia, et al. Effect of EN-1 soil stabilizer on soil anti-erodibility[J]. Journal of Soil and Water Conservation, 2010, 24(5): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005002.htm [111] 王银梅, 徐鹏飞. 新型高分子材料固化黄土边坡的抗冲刷试验[J]. 中国地质灾害与防治学报, 2018, 29(6): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201806013.htmWANG Yin-mei, XU Peng-fei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201806013.htm [112] ZHANG Xiao-chao, ZHONG Yu-jian, PEI Xiang-jun, et al. A coss-linked polymer soil stabilizer for hillslope conservation on the loess plateau[J]. Frontiers in Earth Science, 2021, 9: 771316. [113] ZHAO Xing-kai, LI Zeng-yao, ROBESON M D, et al. Application of erosion-resistant fibers in the recovery of vegetation on steep slopes in the loess plateau of China[J]. Catena, 2018, 160: 233-241. [114] PU Sheng-yan, HOU Ya-qi, MA Jin, et al. Stabilization behavior and performance of loess using a novel biomass-based polymeric soil stabilizer[J]. Environmental and Engineering Geoscience, 2019, 25(2): 103-114. [115] 杨惠林. 黄土地区路基边坡生态防护技术研究[D]. 西安: 长安大学, 2006.YANG Hui-lin. Study on protection skill of zoology and environment aimed at slope in the collapse loess area[D]. Xi'an: Chang'an University, 2006. (in Chinese) [116] 刘宝, 李丹峰. 重载铁路黄土路堑三联生态护坡入渗稳定性及应用研究[J]. 铁道勘察, 2022, 48(3): 57-62, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202203010.htmLIU Bao, LI Dan-feng. Infiltration stability analysis and practical application of triple ecological protection for loess cutting slope of the heavy-haul railway[J]. Railway Investigation and Surveying, 2022, 48(3): 57-62, 68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202203010.htm [117] 尚亚雄, 薛珺华, 刘艺超, 等. 黄土边坡生态护坡应用研究—以三原清河流域段黄土边坡治理为例[J]. 环境科学与管理, 2022, 47(1): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ202201034.htmSHANG Ya-xiong, XUE Jun-hua, LIU Yi-chao, et al. Study on application of ecological protection technology on loess slope—a case study of loess slope treatment in Sanyuan Qinghe River Basin[J]. Environmental Science and Management, 2022, 47(1): 148-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ202201034.htm [118] 董振国. 黄土边坡两种防护材料防护效应差异性研究[D]. 西安: 长安大学, 2021.DONG Zhen-guo. Study on difference of protection effect of two kinds of protection materials for loess slope[D]. Xi'an: Chang'an University, 2021. (in Chinese)