留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高海拔多年冻土区砂石路面公路的路基温度场特征

包卫星 刘亚伦 毛雪松 李伟 秦川 郭强 陈锐

包卫星, 刘亚伦, 毛雪松, 李伟, 秦川, 郭强, 陈锐. 高海拔多年冻土区砂石路面公路的路基温度场特征[J]. 交通运输工程学报, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004
引用本文: 包卫星, 刘亚伦, 毛雪松, 李伟, 秦川, 郭强, 陈锐. 高海拔多年冻土区砂石路面公路的路基温度场特征[J]. 交通运输工程学报, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004
BAO Wei-xing, LIU Ya-lun, MAO Xue-song, LI Wei, QIN Chuan, GUO Qiang, CHEN Rui. Characteristics of subgrade temperature field of gravel road in high altitude permafrost region[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004
Citation: BAO Wei-xing, LIU Ya-lun, MAO Xue-song, LI Wei, QIN Chuan, GUO Qiang, CHEN Rui. Characteristics of subgrade temperature field of gravel road in high altitude permafrost region[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004

高海拔多年冻土区砂石路面公路的路基温度场特征

doi: 10.19818/j.cnki.1671-1637.2023.04.004
基金项目: 

国家自然科学基金项目 51878064

新疆维吾尔自治区重大科技专项项目 2020A03003-7

陕西省自然科学基础研究计划项目 2021JM-180

详细信息
    作者简介:

    包卫星(1979-), 男, 新疆乌鲁木齐人,长安大学教授,工学博士,从事特殊土路基工程研究

  • 中图分类号: U416.168

Characteristics of subgrade temperature field of gravel road in high altitude permafrost region

Funds: 

National Natural Science Foundation of China 51878064

Major Science and Technology Projects of Xinjiang Uygur Autonomous Region 2020A03003-7

Natural Science Basic Research Project of Shaanxi Province 2021JM-180

More Information
  • 摘要: 为了研究修筑公路对高海拔多年冻土层热状态的影响,开展了新藏公路多年冻土区路段沿线病害调查,在海拔5 400 m地带修筑了冻土地温监测断面与气象监测站点;对气温、地温、辐射强度进行了监测,依据监测结果计算了冻土上限处的热流通量,分析了多年冻土层地温变化特征;基于热传导和热扩散理论,建立了天然地基及普通路基下部多年冻土地温-深度理论预测模型。研究结果表明:多年冻土区公路病害主要由于沥青路面大量吸热导致,热棒、隔热层等主动、被动保护的手段虽有一定效果,但不能改变多年冻土的快速退化;研究区域天然地基与路基中心一天内温差最高达19.66 ℃,左、右路肩一天内温差最高为4.94 ℃,天然地基下深层多年冻土温度稳定在-6.0 ℃左右,路基中心下部深层多年冻土温度稳定在-5.6 ℃左右,路基下部相较天然地基温度变化更为剧烈,且等温层温度更高;研究区域的辐射强度在一天的10:00~18:00显著增强,在一年的3~6月为辐射强度的顶峰期,浅层地温主要受辐射强度的年周期变化影响;天然地基、路基中心、阴坡路肩与阳坡路肩下部多年冻土层年热流通量依次为-4 001、-14 649、-4 487与58 303 kJ·m-2,路基中心散热速率大于天然地基,阳坡路肩处大量吸热;天然地基的等温层出现在9.79 m深度处,而路基中心等温层出现在9.61 m深度处,路基中心等温层位置更浅,路基土的换填使路基下部浅层冻土温度变化更明显,短期内对下部多年冻土的散热有正向作用;在阴阳坡效应下,阳坡下部多年冻土温度升高,路基热稳定性降低,并产生不均匀沉降。

     

  • 图  1  研究区域地理位置

    Figure  1.  Geographic location of research region

    图  2  试验路基结构断面

    Figure  2.  Structure sections of test subgrades

    图  3  试验路段病害

    Figure  3.  Diseases of test road sections

    图  4  监测点布设

    Figure  4.  Monitoring points deployment

    图  5  监测断面

    Figure  5.  Monitoring section

    图  6  浅层地温变化曲线

    Figure  6.  Varing curves of shallow ground temperature

    图  7  天然地基孔、路基中心孔月均化温度-深度变化曲线

    Figure  7.  Monthly average temperature-depth varing curves of natural foundation pore and subgrade center pore

    图  8  护道孔月均化温度-深度变化曲线

    Figure  8.  Monthly average temperature-depth varing curves of berm pores

    图  9  路肩孔月均化温度-深度变化曲线

    Figure  9.  Monthly average temperature-depth varing curves of road shoulder pores

    图  10  天然地基孔各深度温度随时间变化曲线

    Figure  10.  Varing curves of different depths temperature of natural foundation pore with time

    图  11  各时刻的辐射强度在一年周期内的变化曲线

    Figure  11.  Radiation intensity variation curves at different moments over a one-year period

    图  12  一天中各时刻年均辐射强度

    Figure  12.  Average annual radiation intensities at all times in a day

    图  13  各孔位3.5~4.0 m深度热流通量

    Figure  13.  Heat fluxes of different pores at depths of 3.5-4.0 m

    图  14  天然地基孔与路基中心孔实测和拟合温度曲线

    Figure  14.  Measuring and fitting temperature curves of natural foundation pore and subgrade center pore

    图  15  天然地基孔与路基中心孔实测和预测温度曲线

    Figure  15.  Measured and predicted ground temperature curves of natural foundation pore and subgrade center pore

    图  16  各深度处长期实测与预测地温

    Figure  16.  Long-term measured and predicted ground temperatures at different depths

    图  17  多年冻土地温-深度预测等温线

    Figure  17.  Temperature-depth prediction isotherms of permafrost

    表  1  多年冻土参数

    Table  1.   Permafrost parameters

    冻胀等级 标准冻深/m 最大冻深/m 含冰量/% 融沉系数
    Ⅰ、Ⅱ 1.9~3.0 3.8 8~15 0.9~1.7
    下载: 导出CSV

    表  2  路基下3.5~4.0 m深度土体的热收支

    Table  2.   Heat budgets of soil at depths of 3.5-4.0 m under subgrade

    位置 天然地基 阴坡路肩 路基中心 阳坡路肩
    土体年热收支/(kJ·m-2) -4 001 -4 487 -14 649 58 303
    下载: 导出CSV
  • [1] WU Qing-bai, ZHANG Zhong-qiong, LIU Yong-zhi. Long-term thermal effect of asphalt pavement on permafrost under an embankment[J]. Cold Regions Science and Technology, 2010, 60(3): 221-229. doi: 10.1016/j.coldregions.2009.10.007
    [2] LUO Xiao-xiao, YU Qi-hao, MA Qin-guo, et al. Study on the heat and deformation characteristics of an expressway embankment with shady and sunny slopes in warm and ice-rich permafrost regions[J]. Transportation Geotechnics, 2020, 24: 100390. doi: 10.1016/j.trgeo.2020.100390
    [3] 权磊, 田波, 牛开民, 等. 青藏高原高等级道路路基路面温度变化特征[J]. 交通运输工程学报, 2017, 17(2): 21-30. https://transport.chd.edu.cn/article/id/201702003

    QUAN Lei, TIAN Bo, NIU Kai-min, et al. Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 21-30. (in Chinese) https://transport.chd.edu.cn/article/id/201702003
    [4] 马勤国, 赖远明, 吴道勇. 多年冻土区高等级公路路基温度场研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2415-2423. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201607032.htm

    MA Qin-guo, LAI Yuan-ming, WU Dao-yong. Analysis of temperature field of high grade highway embankment in permafrost regions[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2415-2423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201607032.htm
    [5] 孙志忠, 马巍, 温智, 等. 青藏铁路多年冻土区普通路基地温监测及其预测分析[J]. 铁道学报, 2010, 32(3): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201003017.htm

    SUN Zhi-zhong, MA Wei, WEN Zhi, et al. Experimental and numerical analyses on traditional embankment of Qinghai-Tibet Railway[J]. Journal of the China Railway Society, 2010, 32(3): 71-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201003017.htm
    [6] 常晓丽, 金会军, 何瑞霞, 等. 大兴安岭北部多年冻土监测进展[J]. 冰川冻土, 2013, 35(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501011.htm

    CHANG Xiao-li, JIN Hui-jun, HE Rui-xia, et al. Review of permafrost monitoring in the Northern Da Hinggan Mountains, Northeast China[J]. Journal of Glaciology and Geocryology, 2013, 35(1): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501011.htm
    [7] 房建宏, 刘建坤. 国道214沿线路基下伏多年冻土热状况长期变化分析[J]. 中国公路学报, 2016, 29(11): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201611006.htm

    FANG Jian-hong, LIU Jian-kun. Analysis of long-term changes for thermal regine of permafrost underlying subgrade along National Highway G214[J]. China Journal of Highway and Transport, 2016, 29(11): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201611006.htm
    [8] 汪双杰, 崔福庆, 陈建兵, 等. 基于地气耦合模型的多年冻土区宽幅路基温度场数值模拟[J]. 中国公路学报, 2016, 29(6): 169-178. doi: 10.3969/j.issn.1001-7372.2016.06.003

    WANG Shuang-jie, CUI Fu-qing, CHEN Jian-bing, et al. Numerical simulations of temperature field for wide subgrade in permafrost regions under earth-atmosphere coupled system[J]. China Journal of Highway and Transport, 2016, 29(6): 169-178. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.06.003
    [9] 李宁, 徐彬, 陈飞熊. 冻土路基温度场、变形场和应力场的耦合分析[J]. 中国公路学报, 2006, 19(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200603000.htm

    LI Ning, XU Bin, CHEN Fei-xiong. Coupling analysis of temperature, deformation and stress field for frozen soil roadbed[J]. China Journal of Highway and Transport, 2006, 19(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200603000.htm
    [10] 戚春香, 李瑶, 杨简, 等. 青藏高原机场跑道多年冻土地基温度场特征[J]. 交通运输工程学报, 2019, 19(1): 33-47. doi: 10.19818/j.cnki.1671-1637.2019.01.005

    QI Chun-xiang, LI Yao, YANG Jian, et al. Characteristics of temperature field of airfield runway permafrost subgrade in Qinghai-Tibetan Plateau[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 33-47. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.01.005
    [11] 刘德平, 汪双杰, 王彩勤. 国道214线鄂拉山至清水河段多年冻土地温预测模型研究[J]. 公路交通科技, 2016, 33(5): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201605009.htm

    LIU De-ping, WANG Shuang-jie, WANG Cai-qin. Research of prediction model of permafrost temperature of National Road 214 from Ela Mountain to Qingshui River[J]. Journal of Highway and Transportation Research and Development, 2016, 33(5): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201605009.htm
    [12] 刘德平, 汪双杰, 金龙. 共和至玉树公路多年冻土地温拟合模型[J]. 中国公路学报, 2015, 28(12): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512016.htm

    LIU De-ping, WANG Shuang-jie, JIN Long. Permafrost ground temperature fitting model of Gonghe-Yushu Highway[J]. China Journal of Highway and Transport, 2015, 28(12): 100-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512016.htm
    [13] 汪双杰, 王佐, 袁堃, 等. 青藏公路多年冻土地区公路工程地质研究回顾与展望[J]. 中国公路学报, 2015, 28(12): 1-8, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512002.htm

    WANG Shuang-jie, WANG Zuo, YUAN Kun, et al. Qinghai-Tibet highway engineering geology in permafrost regions: review and prospect[J]. China Journal of Highway and Transport, 2015, 28(12): 1-8, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512002.htm
    [14] 李金平, 张娟, 陈建兵, 等. 高寒冻土区路基变形演化规律与破坏特征[J]. 交通运输工程学报, 2016, 16(4): 78-87. doi: 10.19818/j.cnki.1671-1637.2016.04.008

    LI Jin-ping, ZHANG Juan, CHEN Jian-bing, et al. Evolution laws and failure characteristics of subgrade deformation in alpine permafrost region[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 78-87. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.008
    [15] 刘戈, 汪双杰, 金龙, 等. 多年冻土区热棒路基应用效果[J]. 交通运输工程学报, 2016, 16(4): 59-67. doi: 10.19818/j.cnki.1671-1637.2016.04.006

    LIU Ge, WANG Shuang-jie, JIN Long, et al. Applicable effect of thermosyphon subgrades in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 59-67. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.006
    [16] 金龙, 汪双杰, 穆柯, 等. 青藏公路热棒路基降温效能[J]. 交通运输工程学报, 2016, 16(4): 45-58. doi: 10.19818/j.cnki.1671-1637.2016.04.005

    JIN Long, WANG Shuang-jie, MU Ke, et al. Cooling effect of thermosyhpon subgrade for Qinghai-Tibet Highway[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 45-58. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.005
    [17] ZHANG Zhen-yu, YU Qi-hao, YOU Yan-hui, et al. Cooling effect analysis of temperature-controlled ventilated embankment in Qinghai-Tibet Testing Expressway[J]. Cold Regions Science and Technology, 2020, 173: 103012.
    [18] LUO Xiao-xiao, YU Qi-hao, MA Qin-guo, et al. Evaluation on the stability of expressway embankment combined with L-shaped thermosyphons and insulation boards in warm and ice-rich permafrost regions[J]. Transportation Geotechnics, 2021, 30: 100633.
    [19] 汪双杰, 熊丽, 张驰, 等. 多年冻土区公路病害模糊专家预测方法[J]. 交通运输工程学报, 2016, 16(4): 112-121. doi: 10.19818/j.cnki.1671-1637.2016.04.012

    WANG Shuang-jie, XIONG Li, ZHANG Chi, et al. Fuzzy expert prediction method for highway diseases in permafrost region[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 112-121. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.012
    [20] 韩龙武, 蔡汉成, 程佳, 等. 莫斯科-喀山高速铁路沿线季节性冻土冻融特征[J]. 交通运输工程学报, 2018, 18(3): 44-55. doi: 10.19818/j.cnki.1671-1637.2018.03.005

    HAN Long-wu, CAI Han-cheng, CHENG Jia, et al. Freezing and thawing characteristics of seasonal frozen soil along Moscow-Kazan High-Speed Railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 44-55. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.03.005
    [21] 李顺群, 陈之祥, 夏锦红, 等. 冻土导热系数的聚合模型研究及试验验证[J]. 中国公路学报, 2018, 31(8): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201808005.htm

    LI Shun-qun, CHEN Zhi-xiang, XIA Jin-hong, et al. Aggregation model research and experimental verification of frozen soil thermal conductivity[J]. China Journal of Highway and Transport, 2018, 31(8): 39-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201808005.htm
    [22] XIAO Wei, LIU En-long, YIN Xiao, et al. Numerical simulation of coupled liquid water, stress and heat for frozen soil in the thawing process[J]. Engineering Computations, 2022, 39(4): 1492-1510.
    [23] 陈建兵, 刘志云, 崔福庆, 等. 青藏高原工程走廊带多年冻土辨识及年平均地温预估模型[J]. 中国公路学报, 2015, 28(12): 33-41, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512006.htm

    CHEN Jian-bing, LIU Zhi-yun, CUI Fu-qing, et al. Permafrost identification and annual mean ground temperatures prediction model for Qinghai-Tibet Engineering Corridor[J]. China Journal of Highway and Transport, 2015, 28(12): 33-41, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512006.htm
    [24] CHEN Xing, JEONG S, PARK C E, et al. Different responses of surface freeze and thaw phenology changes to warming among Arctic permafrost types[J]. Remote Sensing of Environment, 2022, 272: 112956.
    [25] MA Shen, YANG Bin, ZHAO Jing-yi, et al. Hydrothermal dynamics of seasonally frozen soil with different vegetation coverage in the Tianshan Mountains[J]. Frontiers in Earth Science, 2022, 9: 806309.
    [26] GONZÁLEZ-ROUCO J F, BELTRAMI H, ZORITA E, et al. Borehole climatology: a discussion based on contributions from climate modeling[J]. Climate of the Past, 2009, 5(1): 97-127.
    [27] 陈友明, 王宇航, 莫志姣. 土壤初始温度模型[J]. 湖南大学学报(自然科学版), 2007, 34(7): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200707005.htm

    CHEN You-ming, WANG Yu-hang, MO Zhi-jiao. Modeling for initial soil temperature[J]. Journal of Hunan University (Natural Sciences), 2007, 34(7): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200707005.htm
    [28] 何报寅, 刘杰, 徐贵来, 等. 浅层地温剖面曲线拟合法估算热扩散系数[J]. 华中师范大学学报(自然科学版), 2012, 46(1): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201201023.htm

    HE Bao-yin, LIU Jie, XU Gui-lai, et al. Estimation of thermal diffusivity using subsurface temperature profile curve fitting algorithm[J]. Journal of Central China Normal University (Natural Sciences), 2012, 46(1): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201201023.htm
    [29] 符进, 姜宇, 彭惠, 等. 多年冻土区大直径钻孔灌注桩早期回冻规律[J]. 交通运输工程学报, 2016, 16(4): 104-111. doi: 10.19818/j.cnki.1671-1637.2016.04.011

    FU Jin, JIANG Yu, PENG Hui, et al. Early refreezing law of large-diameter cast-in-place piles in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 104-111. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.011
    [30] ZHAO Shang-min, CHENG Wei-ming, YUAN Ye-cheng, et al. Global permafrost simulation and prediction from 2010 to 2100 under different climate scenarios[J]. Environmental Modelling and Software, 2022, 149: 105307.
    [31] SEMIN M, LEVIN L, BOGOMYAGKOV A, et al. Features of adjusting the frozen soil properties using borehole temperature measurements[J]. Modelling and Simulation in Engineering, 2021, 2021: 1-17.
    [32] 穆柯, 袁堃, 金龙, 等. 高寒高海拔多年冻土区拓宽路基差异沉降[J]. 交通运输工程学报, 2016, 16(4): 68-77. doi: 10.19818/j.cnki.1671-1637.2016.04.007

    MU Ke, YUAN Kun, JIN Long, et al. Differential settlement of widened subgrade in cold and high-altitude permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 68-77. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.007
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  179
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回