Influences of water level rise on dynamic responses and long-term settlement of high-speed railway subgrade
-
摘要: 基于Biot理论,建立了轨道-路基-多层饱和土地基耦合系统的2.5维有限元分析模型,提出了考虑实际列车循环荷载作用的路基累积沉降计算方法,分析了水位抬升、列车速度和列车轴重对路基动力响应与长期沉降的影响。研究结果表明:水位抬升对土体振动强度的放大作用并不是局限在水位变化的深度范围内,而是会导致整个路基和地基断面的振动增大,并且这种全断面式的振动放大效应随着列车速度的提高而增强;水位抬升至路基内部时,路基内部会出现显著的超静孔压,最大值达到27.52 kPa,导致有效应力大幅下降,路基内土单元的应力路径向破坏线靠近;当水位仅在地基内抬升时,路基在列车循环荷载作用下的累积变形较小,线路沉降主要来自于地基,当水位抬升至路基内部时,路基累积变形随加载次数的增加发展迅速,100万次加载后变形为19.54 mm,远超容许值,说明路基防水对于线路的长期累积沉降控制具有关键作用;路基和地基的累积变形受列车速度和列车轴重的影响,随着列车轴重的增加而显著增大,并且轴重的增加对路基累积变形的影响相较于地基更强烈,在设计时需要格外关注。Abstract: Based on the Biot theory, a 2.5-dimensional finite element analysis model of the track-subgrade-multilayered saturated soil foundation coupling system was established, and a calculation method for the cumulative settlement of the subgrade considering the actual train cyclic load was proposed. The influences of water level rise, train speed, and axle load on subgrade dynamic response and long-term settlement were discussed. Research results show that the amplification effect of water level rise on the soil vibration intensity is not limited to the depth of water level change, but will lead to the increase in the vibration of the entire subgrade and foundation section. This full-section vibration amplification effect increases with train speed. When the water level rises to the inside of the subgrade, significant excess pore pressure will generate inside the subgrade, and the maximum value can reach 27.52 kPa, resulting in a large drop in the effective stress. Then, the stress path of the soil element in the subgrade will approach the failure line. When the water level only rises within the foundation, the cumulative deformation of the subgrade under the train cyclic load is small, and the railway settlement mainly comes from the foundation. When the water level rises to the inside of the subgrade, the cumulative deformation of the subgrade develops rapidly with the loading cycles, which is 19.54 mm after one million times of loading and exceeds the allowable value largely, indicating that the subgrade waterproofing plays a key role in the long-term cumulative settlement control of the railway line. The train speed and axle load affect the cumulative deformation of the subgrade and foundation, and the increase significantly with the axle load of the train. The increase in the axle load has a stronger influence on the cumulative deformation of the subgrade than the foundation. Thus, the effect of axle load on the cumulative deformation should be well considered in the design.
-
表 1 饱和地基参数
Table 1. Parameters of saturated foundation
参数 取值 α 0.95 M/GPa 5 G/GPa 30 υ 0.125 ρs/(kg·m-3) 2 500 ρf/(kg·m-3) 1 000 n 0.3 kD/(m·s-1) 10-6 η/(kg·m-3) 6 670 表 2 土层初始参数
Table 2. Initial parameters of soil layers
土层 α M/MPa E/MPa υ ρs/(kg·m-3) ρf/(kg·m-3) D0 n kD/(m·s-1) 路基表层 0.001 0.001 240 0.25 2 500 0.001 0.05 0.001 10-20 路基底层 0.001 0.001 140 0.30 2 200 0.001 0.05 0.001 10-20 土层1 0.001 0.001 113 0.35 2 700 0.001 0.05 0.001 10-20 土层2 0.001 0.001 113 0.35 2 700 0.001 0.05 0.001 10-20 土层3 0.001 0.001 135 0.35 2 700 0.001 0.05 0.001 10-20 表 3 饱和土层参数
Table 3. Parameters of saturated soil layers
土层 α M/MPa E/MPa υ ρs/(kg·m-3) ρf/(kg·m-3) D0 n kD/(m·s-1) 路基表层 0.001 0.001 240 0.25 2 500 1 000 0.05 0.001 100 路基底层 1.000 6 400 80 0.30 2 700 1 000 0.05 0.300 10-6 土层1 1.000 3 520 45 0.35 2 700 1 000 0.05 0.600 10-6 土层2 1.000 3 520 45 0.35 2 700 1 000 0.05 0.600 10-8 土层3 1.000 3 520 60 0.35 2 700 1 000 0.05 0.600 10-6 表 4 CRH2列车参数
Table 4. Parameters of CRH2 train
参数 数值 车厢质量/kg 45 000 转向架质量/kg 3 600 轮对质量/kg 1 700 车厢长度/m 24.8 相邻转向架中心距/m 14.9 转向架长度/m 2.5 表 5 板式轨道参数
Table 5. Parameters of slab track
轨道参数 数值 钢轨质量/(kg·m-1) 60.64 钢轨抗弯刚度/(MN·m2) 6.625 轨道板弯曲刚度/(MN·m2) 40 轨道板质量/(kg·m-1) 950 混凝土底座弯曲刚度/(MN·m2) 190 混凝土底座质量/(kg·m-1) 1 800 扣件刚度/(kN·mm-1) 28.5 扣件阻尼/(N·s·m-1) 5.0×104 表 6 正常路基/地基拟合参数(工况1)
Table 6. Fitting parameters of normal subgrade/foundation (case 1)
参数 基床表层 基床表层(未饱和) 地基(未饱和) ε0 3.710 0.993 0.873 B 0.058 0.078 0.108 k 4.20 3.85 2.78 s′ 2.07 64.00 53.00 m′ 2.1 9.5 163.2 υ* 0.4 0.3 0.3 表 7 饱和路基/地基拟合参数(工况4、5)
Table 7. Fitting parameters of saturated subgrade/ foundation (cases 4 and 5)
参数 基床表层 基床表层(饱和) 地基(饱和) ε0 3.710 -0.002 -0.023 B 0.058 -0.697 -0.403 k 4.20 0.59 0.74 s′ 2.07 64.00 2.12 m′ 2.1 9.5 33.0 υ* 0.4 0.3 0.3 -
[1] 蒋红光. 高速铁路板式轨道结构-路基动力相互作用及累积沉降研究[D]. 杭州: 浙江大学, 2014.JIANG Hong-guang. Dynamic interaction of slab track structure-subgrade system and accumulative settlement in high-speed railways[D]. Hangzhou: Zhejiang University, 2014. (in Chinese) [2] 王瀚霖. 高速铁路路基力学性能及水分运移规律研究[D]. 杭州: 浙江大学, 2017.WANG Han-lin. Mechanical characterization and moisture migration of the high-speed railway track-bed[D]. Hangzhou: Zhejiang University, 2014. (in Chinese) [3] 史培军, 孔锋, 方佳毅. 中国年代际暴雨时空变化格局[J]. 地理科学, 2014, 34(11): 1281-1290. doi: 10.13249/j.cnki.sgs.2014.11.001SHI Pei-jun, KONG Feng, FANG Jia-yi. Spatio-temporalpatterns of china decadal storm rainfall[J]. Scientia Geographica Sinica, 2014, 34(11): 1281-1290. (in Chinese) doi: 10.13249/j.cnki.sgs.2014.11.001 [4] THOM N H, BROWN S F. Effect of moisture on the structural performance of a crushed-limestone road base[J]. Transportation Research Record, 1987, 1121: 50-56. [5] MAREE J H, FREEME C R, VAN ZIJL N J W, et al. The permanent deformation of pavements with untreated crushed-stone bases as measured in heavy vehicle simulator tests[J]. Australian Road Research, 1982, 11: 16-28. [6] DUONG T V, TANG A M, CUI Y J, et al. Effects of fines and water contents on the mechanical behavior of interlayer soil in ancient railway sub-structure[J]. Soils and Foundations, 2013, 53(6): 868-878. doi: 10.1016/j.sandf.2013.10.006 [7] LAMAS-LOPEZ F. Field and laboratory investigation on the dynamic behaviour of conventional railway track-bed materials in the context of traffic upgrade[D]. Paris: Université Paris-Est, 2016. [8] JIANG Hong-guang, BIAN Xue-cheng, CHEN Yun-ming, et al. Impact of water level rise on the behaviors of railway track structure and substructure: Full-scale experimental investigation[J]. Transportation Research Record, 2015, 2476: 15-22. doi: 10.3141/2476-03 [9] HUANG J J, SU Q, WANG W, et al. Field investigation and full-scale model testing of mud pumping and its effect on the dynamic properties of the slab track-subgrade interface[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(8): 802-816. doi: 10.1177/0954409718810262 [10] 陈仁朋, 赵星, 蒋红光, 等. 水位变化对无砟轨道路基变形特性影响的研究[J]. 铁道学报, 2014, 36(3): 87-93. doi: 10.3969/j.issn.1001-8360.2014.03.014CHEN Ren-peng, ZHAO Xing, JIANG Hong-guang, et al. Model test on deformatio characteristics of slab track-subgrade under changes of water level[J]. Journal of the China Railway Society, 2014, 36(3): 87-93. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.03.014 [11] 陈善雄, 宋瑞军, 余飞, 等. 降雨入渗对路基动力响应的变化规律研究[J]. 岩石力学与工程学报, 2017, 36(增2): 4212-4219. doi: 10.13722/j.cnki.jrme.2016.0656CHEN Shan-xiong, SONG Rui-jun, YU Fei, et al. The change rules of dynamic response on subgrade under the rainfall infiltration[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4212-4219. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0656 [12] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ: Low frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239 [13] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ: Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191. doi: 10.1121/1.1908241 [14] ZIENKIEWICZ O C, SHIOMI T. Dynamic behaviour of saturated porous media: the generalized biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71-96. doi: 10.1002/nag.1610080106 [15] LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44: 573-586. doi: 10.1016/j.ijsolstr.2006.05.020 [16] LU J F, HANYGA A. Fundamental solution for a layered porous half space subject to a vertical point force or a point fluid source[J]. Computational Mechanics, 2005, 35(5): 376-391. doi: 10.1007/s00466-004-0626-5 [17] 徐斌, 陆建飞, 王建华, 等. 移动荷载作用下层状饱和土的动力响应[J]. 岩土力学, 2008, 29(12): 3186-3192. doi: 10.3969/j.issn.1000-7598.2008.12.002XU Bin, LU Jian-fei, WANG Jian-hua, et al. Dynamic response of layered saturated soil under moving loads[J]. Rock and Soil Mechanics, 2008, 29(12): 3186-3192. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.12.002 [18] 巴振宁, 梁建文, 金威. 高速移动列车荷载作用下层状饱和地基-轨道耦合系统的动力响应[J]. 工程力学, 2015, 32(11): 189-200. doi: 10.6052/j.issn.1000-4750.2014.04.0323BA Zhen-ning, LIANG Jian-wen, JIN Wei. Dynamic response of coupled system of track and layered fluid-saturated ground under moving high-speed loads[J]. Engineering Mechanics, 2015, 32(11): 189-200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0323 [19] CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie. Response of railway track system on poroelastic half-space soil medium subjected to a moving train load[J]. International Journal of Solids and Structures, 2008, 45(18/19): 5015-5034. [20] 胡安峰, 李怡君, 贾玉帅, 等. 埋置移动荷载作用下成层饱和地基的动力响应[J]. 工程力学, 2016, 33(12): 44-51, 62. doi: 10.6052/j.issn.1000-4750.2015.04.0275HU An-feng, LI Yi-jun, JIA Yu-shuai, et al. Dynamic response of a layered saturated ground subjected to a buried moving load[J]. Engineering Mechanics, 2016, 33(12): 44-51, 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.04.0275 [21] AI Zhi-yong, JI Wei-tao, LI Yang, et al. Dynamic response of saturated multilayered soils with elastic superstrata subjected to vertical impulsive loadings[J]. Applied Mathematical Modelling, 2021, 91: 875-891. doi: 10.1016/j.apm.2020.09.019 [22] GAO Guang-yun, CHEN Qing-sheng, HE Jun-fei, et al. Investigation of ground vibration due to trains moving on saturated multi-layered ground by 2.5D finite element method[J]. Soil Dynamics and Earthquake Engineering, 2012, 40: 87-98. doi: 10.1016/j.soildyn.2011.12.003 [23] 高广运, 陈功奇, 李佳. 高速列车荷载作用下横观各向同性饱和地基动力特性的数值分析[J]. 岩石力学与工程学报, 2014, 33(1): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401022.htmGAO Guang-yun, CHEN Gong-qi, LI Jia. Numerical analysis of dynamic characteristic of transversely isotropic saturated soil foundation subjected to high-speed train load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 189-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401022.htm [24] BIAN Xun-cheng, HU Jing, THOMPSON D, et al. Pore pressure generation in a poro-elastic soil under moving train loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105711. doi: 10.1016/j.soildyn.2019.105711 [25] 胡静, 唐跃, 张家康, 等. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 2021, 42(11): 3169-3181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111025.htmHU Jing, TANG Yue, ZHANG Jia-kang, et al. Dynamic responses of saturated soft soil foundation under high speed train[J]. Rock and Soil Mechanics, 2021, 42(11): 3169-3181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111025.htm [26] YUAN Zong-hao, CAI Yuan-qiang, CAO Zhi-gang. An analytical model for vibration prediction of a tunnel embedded in a saturated full-space to a harmonic point load[J]. Soil Dynamics and Earthquake Engineering, 2016, 86: 25-40. doi: 10.1016/j.soildyn.2016.04.004 [27] CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie. Steady state responses of poroelastic half-space soil medium to a moving rectangular load[J]. International Journal of Solids and Structures, 2007, 44(22/23): 7183-7196. [28] LIU G R, QUEK JERRY S S. A non-reflecting boundary for analyzing wave propagation using the finite element method[J]. Finite Elements in Analysis and Design, 2003, 39(5/6): 403-417. [29] MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[J]. Transportation Research Record, 1975(537): 1-17. [30] LI D Q, SELIG E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, 1996, 122(12): 1006-1013. doi: 10.1061/(ASCE)0733-9410(1996)122:12(1006) [31] HORNYCH P, CORTE J, PAUTE J. Study of permanent deformations under repeated loadings of three untreated gravels[J]. Liaison Bulletin of the Ponts et Chaussees Laboratories, 1993, 184: 45-55. [32] GIDEL G, HORNYCH P, CHAUVIN J J, et al. A new approach for investigating the permanent deformation behavior of unbound granular material using the repeated loading triaxial apparatus[J]. Liaison Bulletin of the Ponts et Chaussees Laboratories, 2001, 233: 5-21. [33] ABDELKRIM M, BONNET G, BUHAN P D. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading[J]. Computers and Geotechnics, 2003, 30(6): 463-476. [34] 边学成, 蒋红光, 申文明, 等. 基于模型试验的高铁路基动力累积变形研究[J]. 土木工程学报, 2011, 44(6): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201106018.htmBIAN Xue-chen, JIANG Hong-guang, SHEN Wen-ming, et al. Study of accumulative deformation of high-speed railways based on physical model testing[J]. China Civil Engineering Journal, 2011, 44(6): 112-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201106018.htm [35] TAKEMIYA H, BIAN X C. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics, 2005, 131(7): 699-711. [36] 赵星. 水位变化对高铁路基动力特性及累积变形特性的影响研究[D]. 杭州: 浙江大学, 2014.ZHAO Xing. The influence of water level variation on dynamic performance and cumulative deformation of subgrade[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)