留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软弱破碎地层隧道半椭球体松散荷载计算方法

韩鑫 叶飞 刘畅 韩兴博 贾艳领 王东方

韩鑫, 叶飞, 刘畅, 韩兴博, 贾艳领, 王东方. 软弱破碎地层隧道半椭球体松散荷载计算方法[J]. 交通运输工程学报, 2023, 23(4): 165-177. doi: 10.19818/j.cnki.1671-1637.2023.04.012
引用本文: 韩鑫, 叶飞, 刘畅, 韩兴博, 贾艳领, 王东方. 软弱破碎地层隧道半椭球体松散荷载计算方法[J]. 交通运输工程学报, 2023, 23(4): 165-177. doi: 10.19818/j.cnki.1671-1637.2023.04.012
HAN Xin, YE Fei, LIU Chang, HAN Xing-bo, JIA Yan-ling, WANG Dong-fang. Calculation method of semi-ellipsoid loose load on tunnel in weak and fragmented stratum[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 165-177. doi: 10.19818/j.cnki.1671-1637.2023.04.012
Citation: HAN Xin, YE Fei, LIU Chang, HAN Xing-bo, JIA Yan-ling, WANG Dong-fang. Calculation method of semi-ellipsoid loose load on tunnel in weak and fragmented stratum[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 165-177. doi: 10.19818/j.cnki.1671-1637.2023.04.012

软弱破碎地层隧道半椭球体松散荷载计算方法

doi: 10.19818/j.cnki.1671-1637.2023.04.012
基金项目: 

国家自然科学基金项目 52078046

国家自然科学基金项目 52108360

中央高校基本科研业务费专项资金项目 300102212702

详细信息
    作者简介:

    韩鑫(1993-),男,内蒙古乌兰察布人,长安大学工学博士研究生,从事隧道施工期衬砌变形、裂损及控制方法研究

    叶飞(1977-),男,陕西石泉人,长安大学教授,工学博士

  • 中图分类号: U451

Calculation method of semi-ellipsoid loose load on tunnel in weak and fragmented stratum

Funds: 

National Natural Science Foundation of China 52078046

National Natural Science Foundation of China 52108360

Fundamental Research Funds for the Central Universities 300102212702

More Information
  • 摘要: 为有效控制隧道围岩压力,优化隧道支护结构,研究了软弱破碎地层作用在隧道衬砌结构上的松散荷载;根据相关文献中砂性地层隧道周边围岩松动变形试验,采用半椭球体拟合了地层松动范围,提出了软弱破碎地层半椭球体松散荷载模型,给出了松散荷载随隧道收敛变形的计算表达式,分析了松散荷载的分布特征及其随隧道收敛变形的变化特征;为提高松散荷载计算效率,将半椭球体松动边界离散为多个线段,提出了松散荷载离散求和的数值计算流程;为进一步增强计算模型的工程实用性,采用二次多项式拟合松散荷载,得到了松散荷载随隧道收敛变形的简化计算方法。研究结果表明:提出的半椭球体模型可较为准确地描述隧道所受的松散荷载及其随隧道收敛变形的动态变化特征,由于滑动面上摩阻力的作用,松动区范围内的地层竖向应力小于地层初始自重应力,松动区荷载通过滑动面上的摩阻力向周边地层转移,松动区土拱效应显著;随着隧道收敛变形的增加,隧道周边地层松动范围增大,松散椭球体受周边地层的约束作用减弱,地层土拱效应减弱;地层内摩擦角和椭球体偏心率对松散荷载的计算结果影响较大,需根据地质条件测试确定;将半椭圆曲线分为3段时,离散求和的数值计算结果与解析解的相对误差约为3.9%,具有较好的一致性。

     

  • 图  1  隧道周边地层松动范围随隧道埋深的动态变化

    Figure  1.  Dynamic changes in loose range of surrounding stratum of tunnel with tunnel buried depth

    图  2  椭球体理论中的物料流动

    Figure  2.  Material flow in ellipsoid theory

    图  3  隧道拱顶松动区半椭球体模型

    Figure  3.  Semi-ellipsoid model of loose zone in tunnel arch

    图  4  滑动面极限应力状态

    Figure  4.  Ultimate stress state of sliding surface

    图  5  半椭球体松动区所受荷载

    Figure  5.  Applied loads on semi-ellipsoid loose zone

    图  6  松动区外荷载应力竖向分布

    Figure  6.  Distriubtions of applied loads in loose zone along vertical direction

    图  7  松动区合外荷载竖向分布

    Figure  7.  Applied combined external load distributions in loose zone along vertical direction

    图  8  松动区内压应力竖向分布

    Figure  8.  Distributions of compression stress in loose zone along vertical direction

    图  9  隧道收敛变形对松动区内压应力竖向分布的影响

    Figure  9.  Effects of tunnel convergence deformation on distributions of compression stress along vertical direction in loose zone

    图  10  隧道收敛变形对松动区高度和松散荷载的影响

    Figure  10.  Effects of tunnel convergence on height of loose zone and loose load

    图  11  地层黏聚力对松散荷载的影响

    Figure  11.  Effect of stratum cohesion on loose load

    图  12  地层内摩擦角对松散荷载的影响

    Figure  12.  Effect of stratum internal friction angle on loose load

    图  13  隧道埋深对松散荷载的影响

    Figure  13.  Effect of tunnel buried depth on loose load

    图  14  椭球体偏心率对松散荷载的影响

    Figure  14.  Effect of ellipsoid eccentricity on loose load

    图  15  半椭球体边界简化计算

    Figure  15.  Simplified calculation for semi-ellipsoid boundaries

    图  16  半椭球体松动区松散荷载计算流程

    Figure  16.  Calculation process of loose load on semi-ellipsoid loose zone

    图  17  松散荷载与隧道收敛变形的关系

    Figure  17.  Relationship between loose load and tunnel convergence deformation

    图  18  松散荷载拟合曲线

    Figure  18.  Fitting curves of loose load

    表  1  离心模型试验结果拟合

    Table  1.   Fitting of centrifugal model test results

    C/D 1 2 3 4
    bG/m 3.64 3.89 4.33 4.65
    aG/m 5.10 10.15 16.86 23.17
    ε 0.70 0.92 0.97 0.98
    下载: 导出CSV

    表  2  滑动面上的侧压力系数

    Table  2.   Lateral pressure coefficients at sliding surface

    滑动面位置 侧压力系数
    0°θφ/2 K≥1(σhσv)
    φ/2≤θ<90°+φ/2 K≤1(σhσv)
    90°+φ/2≤θ≤180° K≥1(σhσv)
    下载: 导出CSV

    表  3  不同理论分析结果对比

    Table  3.   Comparison of analysis results among different theories

    C/D 模型试验所得pc/kPa Terzaghi公式所得pc/kPa 普氏压力拱所得pc/kPa 文献[6]计算结果 本文计算结果
    m pc/kPa ε ω/m σa /kPa
    1 28.4 37.87 2.281 25.2 0.93 0.21 23.64
    1 28.8 38.40 2.281 25.2 0.93 0.21 23.64
    2 37.5 51.56 75.35 2.461 34.4 0.94 0.80 41.21
    2 37.0 55.52 75.35 2.461 34.4 0.94 0.80 41.21
    3 33.7 56.76 75.35 2.513 38.5 0.95 1.64 46.49
    3 36.4 58.24 75.35 2.513 38.5 0.95 1.64 46.49
    下载: 导出CSV

    表  4  隧道周边地层基本参数

    Table  4.   Basic parameters of stratum around tunnel

    参数 取值 参数 取值
    P0/MPa 0.5 R/m 6
    c/MPa 0.003 ω/m 0.3
    φ/(°) 20 β 1.07
    γ/(kN·m-3) 18 ε 0.92
    γs/(kN·m-3) 17
    下载: 导出CSV

    表  5  松散荷载离散计算结果

    Table  5.   Discrete calculation results of loose load

    计算方法 数值积分计算结果 不同椭圆曲线沿竖向小区间总数n下的离散求和计算结果
    1 2 3 4 5 10 15 20 25
    σa(ω=0.70 m) 0.209 2 0.158 9 0.192 7 0.204 0 0.208 8 0.210 9 0.211 7 0.210 7 0.210 0 0.209 7
    σa(ω=0.30 m) 0.173 5 0.113 9 0.158 0 0.173 2 0.179 2 0.181 5 0.180 4 0.177 9 0.176 4 0.175 5
    σa(ω=0.10 m) 0.144 8 0.077 9 0.130 3 0.148 5 0.155 5 0.157 9 0.155 4 0.151 7 0.149 4 0.148 1
    σa(ω=0.05 m) 0.133 4 0.063 4 0.119 2 0.138 6 0.146 0 0.148 5 0.145 4 0.141 2 0.138 6 0.137 1
    下载: 导出CSV
  • [1] TIEN H J. A literature study of the arching effect[D]. Taipei: National Taiwan University, 1990.
    [2] 王建宇. 对形变压力的认识——隧道围岩挤压性变形问题探讨[J]. 现代隧道技术, 2020, 57(4): 1-11. doi: 10.13807/j.cnki.mtt.2020.04.001

    WANG Jian-yu. The key way is to release the genuine rock pressure—discussion on problems of tunnelling in squeezing ground[J]. Modern Tunnelling Technology, 2020, 57(4): 1-11. (in Chinese) doi: 10.13807/j.cnki.mtt.2020.04.001
    [3] 陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101022.htm

    CHEN Ren-peng, LI Jun, CHEN Yun-min, et al. Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101022.htm
    [4] 汪大海, 贺少辉, 刘夏冰, 等. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322. doi: 10.16285/j.rsm.2018.1475

    WANG Da-hai, HE Shao-hui, LIU Xia-bing, et al. Studies of the progressive ground arching on the loosening pressure above shallow tunnels[J]. Rock and Soil Mechanics, 2019, 40(6): 2311-2322. (in Chinese) doi: 10.16285/j.rsm.2018.1475
    [5] JANELID I, KVAPIL R. Sublevel caving[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1966, 3(2): 129-132.
    [6] 武军, 廖少明, 张迪. 于颗粒流椭球体理论的隧道极限松动区与松动土压力[J]. 土工程学报, 2013, 35(4): 714-721. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304017.htm

    WU Jun, LIAO Shao-ming, ZHANG Di. Loosening zone and earth pressure around tunnels in sandy soils based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 714-721. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304017.htm
    [7] 宫全美, 张润来, 周顺华, 等. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701010.htm

    GONG Quan-mei, ZHANG Run-lai, ZHOU Shun-hua, et al. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701010.htm
    [8] 方焘, 梁连, 颜建伟. 不同埋深下盾构隧道施工引起的地层变形试验[J]. 长江科学院院报, 2023, 40(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202303014.htm

    FANG Tao, LIANG Lian, YAN Jian-wei. Experimental study on stratum deformation caused by shield tunnelling at different buried depths[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(3): 85-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202303014.htm
    [9] 梁连, 方焘, 方立建, 等. 基于PIV技术的隧道施工引起的地层变形规律试验研究[J]. 隧道建设(中英文), 2023, 43(4): 625-633. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202304007.htm

    LIANG Lian, FANG Tao, FANG Li-jian, et al. Experimental study on deformation law of stratum caused by tunnel construction based on particle image velocimetry technique[J]. Tunnel Construction, 2023, 43(4): 625-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202304007.htm
    [10] 方焘, 梁连, 陈其志. 基于修正椭球体理论的隧道松动区及松动土压力研究[J]. 岩土工程学报, 2023, 45(6): 1113-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202306002.htm

    FANG Tao, LIANG Lian, CHEN Qi-zhi. Loosening zone and earth pressure around tunnels based on modified ellipsoid theory[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1113-1122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202306002.htm
    [11] CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187-213.
    [12] ORESTE P. P. Analysis of structural interaction in tunnels using the convergenc-confinement approach[J]. Tunnelling and Underground Space Technology, 2003, 18(4): 347-363.
    [13] GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, MENÉNDEZ-DÍAZ A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2008, 23(1): 25-37.
    [14] PARASKEVOPOULOU C, DIEDERICHS M. Analysis of time-dependent deformation in tunnels using the convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2018, 71: 62-80.
    [15] 孙振宇, 张顶立, 房倩, 等. 隧道初期支护与围岩相互作用的时空演化特性[J]. 岩石力学与工程学报, 2017, 36(增2): 3943-3956. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2027.htm

    SUN Zhen-yu, ZHANG Ding-li, FANG Qian, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3943-3956. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2027.htm
    [16] 李奥, 张顶立, 黄俊, 等. 软弱破碎围岩深埋隧道拱顶渐进性塌方机理及控制[J]. 工程科学与技术, 2022, 54(6): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202206010.htm

    LI Ao, ZHANG Ding-li, HUANG Jun, et al. Progressive collapse mechanism and safety control of deep buried tunnel vault in soft and broken surrounding rock[J]. Advanced Engineering Sciences, 2022, 54(6): 85-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202206010.htm
    [17] 于丽, 吕城, 王明年. 基于非线性M-C准则的深埋土质隧道三维塌落破坏上限分析[J]. 岩土工程学报, 2019, 41(6): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906007.htm

    YU Li, LYU Cheng, WANG Ming-nian. Three-dimensional upper bound limit analysis of deep soil tunnels based on nonlinear Mohr-Coulomb criterion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1023-1030. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906007.htm
    [18] 汪成兵, 朱合华. 隧道塌方机制及其影响因素离散元模拟[J]. 岩土工程学报, 2008, 30(3): 450-456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200803029.htm

    WANG Cheng-bing, ZHU He-hua. Tunnel collapse mechanism and numerical analysis of its influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 450-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200803029.htm
    [19] 房倩, 张顶立, 王毅远, 等. 圆形洞室围岩破坏模式模型试验研究[J]. 岩石力学与工程学报, 2011, 30(3): 564-571. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103016.htm

    FANG Qian, ZHANG Ding-li, WANG Yi-yuan, et al. Model test study of failure modes of surrounding rock for circular caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 564-571. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103016.htm
    [20] IGLESIA G R, EINSTEIN H H, WHITMAN R V. Validation of centrifuge model scaling for soil systems via trapdoor tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1075-1089.
    [21] 汤旅军, 陈仁朋, 尹鑫晟, 等. 密实砂土地层盾构隧道开挖面失稳离心模型试验研究[J]. 岩土工程学报, 2013, 35(10): 1831-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310010.htm

    TANG Lyu-jun, CHEN Ren-peng, YIN Xin-sheng, et al. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1831-1838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310010.htm
    [22] 汪成兵, 朱合华. 埋深对软弱隧道围岩破坏影响机制试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2442-2448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012011.htm

    WANG Cheng-bing, ZHU He-hua. Experimental study of influence mechanism of buried depth on surrounding rock failure of tunnel constructed in soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2442-2448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012011.htm
    [23] 刘飞香. 铁路隧道智能化建造装备技术创新与施工协同管理展望[J]. 隧道建设(中英文), 2019, 39(4): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904003.htm

    LIU Fei-xiang. Prospects for intelligent construction equipment technology innovation and collaborative construction management of railway tunnel[J]. Tunnel Construction, 2019, 39(4): 545-555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904003.htm
    [24] 田四明, 王伟, 李国良, 等. 川藏铁路隧道设计理念与主要原则[J]. 隧道建设(中英文), 2021, 41(4): 519-530. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202104002.htm

    TIAN Si-ming, WANG Wei, LI Guo-liang, et al. Design concept and main principles of tunnel on Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41(4): 519-530. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202104002.htm
    [25] 武松, 汤华, 罗红星, 等. 浅埋大断面公路隧道渐进破坏规律与安全控制[J]. 中国公路学报, 2019, 32(12): 205-216. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201912022.htm

    WU Song, TANG Hua, LUO Hong-xing, et al. Progressive failure law and control criterion for safe construction of shallow buried highway tunnel with different grades of surrounding rock[J]. China Journal of Highway and Transport, 2019, 32(12): 205-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201912022.htm
    [26] 李利平, 李术才, 赵勇, 等. 超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2012, 31(3): 550-560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201203016.htm

    LI Li-ping, LI Shu-cai, ZHAO Yong, et al. 3D geomechanical model for progressive failure progress of weak broken surrounding rock in super large section tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 550-560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201203016.htm
    [27] 张成平, 韩凯航, 张顶立, 等. 城市软弱围岩隧道塌方特征及演化规律试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2433-2442. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412008.htm

    ZHANG Cheng-ping, HAN Kai-hang, ZHANG Ding-li, et al. Test study of collapse characteristics of tunnels in soft ground in urban areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2433-2442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412008.htm
    [28] 李英杰, 张顶立, 宋义敏, 等. 软弱破碎深埋隧道围岩渐进性破坏试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1138-1147. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206008.htm

    LI Ying-jie, ZHANG Ding-li, SONG Yi-min, et al. Experimental research of progressive damage of surrounding rock for soft fractured deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1138-1147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206008.htm
    [29] 叶飞, 毛家骅, 刘燕鹏, 等. 软弱破碎隧道围岩动态压力拱效应模型试验[J]. 中国公路学报, 2015, 28(10): 76-82, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201510012.htm

    YE Fei, MAO Jia-hua, LIU Yan-peng, et al. Model test on effect of dynamic pressure arch of tunnel in soft broken surrounding rock[J]. China Journal of Highway and Transport, 2015, 28(10): 76-82, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201510012.htm
    [30] LEE C J, CHIANG K H, KUO C M. Ground movement and tunnel stability when tunneling in sandy ground[J]. Journal of the Chinese Institute of Engineers, 2004, 27(7): 1021-1032.
    [31] 于学馥, 乔端. 轴变论和围岩稳定轴比三规律[J]. 有色金属, 1981, 33(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS198103001.htm

    YU Xue-fu, QIAO Duan. Theory of axial variation and three rules of axial ratio for stabilizing country rock[J]. Nonferrous Metals, 1981, 33(3): 8-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS198103001.htm
    [32] MCNULTY J W. An experimental study of arching in sand[R]. Vicksburg: US Army Engineer Waterways Experiment Station, 1965.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  115
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-11
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回