留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道施工引起的松砂土层与地表结构响应

徐敬民 徐成华 施烨辉 章定文 徐涛 胥稳 程荷兰

徐敬民, 徐成华, 施烨辉, 章定文, 徐涛, 胥稳, 程荷兰. 隧道施工引起的松砂土层与地表结构响应[J]. 交通运输工程学报, 2023, 23(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2023.04.014
引用本文: 徐敬民, 徐成华, 施烨辉, 章定文, 徐涛, 胥稳, 程荷兰. 隧道施工引起的松砂土层与地表结构响应[J]. 交通运输工程学报, 2023, 23(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2023.04.014
XU Jing-min, XU Cheng-hua, SHI Ye-hui, ZHANG Ding-wen, XU Tao, XU Wen, CHENG He-lan. Responses of loose sand ground and surface structure caused by tunnel construction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2023.04.014
Citation: XU Jing-min, XU Cheng-hua, SHI Ye-hui, ZHANG Ding-wen, XU Tao, XU Wen, CHENG He-lan. Responses of loose sand ground and surface structure caused by tunnel construction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2023.04.014

隧道施工引起的松砂土层与地表结构响应

doi: 10.19818/j.cnki.1671-1637.2023.04.014
基金项目: 

国家自然科学基金项目 52108364

国家自然科学基金项目 52278398

中央高校基本科研业务费专项资金项目 2242022R10086

江苏省隧道与地下工程技术研究中心开放基金研究计划项目 2021-SDJJ-03

详细信息
    作者简介:

    徐敬民(1992-),男,河南永城人,东南大学讲师,工学博士,从事隧道与岩土工程研究

  • 中图分类号: U456.1

Responses of loose sand ground and surface structure caused by tunnel construction

Funds: 

National Natural Science Foundation of China 52108364

National Natural Science Foundation of China 52278398

Fundamental Research Funds for the Central Universities 2242022R10086

Open Fund Research Ptoject of Tunnel and Underground Engineering Research Center of Jiangsu Province 2021-SDJJ-03

More Information
  • 摘要: 通过4组离心试验,模拟相对深度(埋深-直径比)分别为1.3和2.0的隧道在砂质土层中施工,分析了土层与地表建筑的位移与变形规律;通过抽取模型隧道内部的液体模拟隧道施工导致的土层体积损失,并设计了2层铝制框架结构模型,利用粒子图像测速技术测量了隧道施工引起的土层与结构移动数据,分析了地表与建筑筏板基础的水平与垂直位移、深部土层的移动与剪切变形、框架结构剪切变形与分类,以及结构剪切变形的修正系数与相对抗剪刚度。研究结果表明:隧道相对深度从1.3增加到2.0时地表沉降槽宽度从3.4 m增加到5.6 m,地表建筑的最大沉降从32.3 mm增加到49.5 mm,但变形程度有所降低;隧道施工影响下地表框架结构的变形主要表现为剪切变形,弯曲变形所占比重可以忽略不计;隧道施工引起松砂土层发生收缩变形,导致地表土层体积损失率始终大于隧道体积损失率,且隧道越深,差异越大;较浅隧道试验中建筑筏板基础与土层间存在较大间隙(27 mm),而较深隧道间隙几乎为0,从而增大了建筑筏板基础对地表土体水平移动的约束范围;建筑的剪切变形修正系数随隧道体积损失率的增加逐渐降低,且浅隧道的变化速率更大;2种隧道相对深度的建筑剪切变形修正系数-相对抗剪刚度数据点均位于已有经验包络线的内部,表明该修正系数也适用于较深隧道。

     

  • 图  1  离心模型试验方案

    Figure  1.  Plans of centrifuge model tests

    图  2  离心模型与相机安装

    Figure  2.  Setup of centrifuge model and cameras

    图  3  建筑筏板基础与地表位移

    Figure  3.  Displacements of building raft foundation and ground surface

    图  4  建筑筏板基础与地表最大沉降变化规律

    Figure  4.  Variation laws of maximum settlements of building raft foundation and ground surface

    图  5  Vs-Vt关系曲线

    Figure  5.  Vs-Vt Relationship curves

    图  6  土层体积损失率随相对深度的变化规律

    Figure  6.  Changing rules of soil volume loss rates with relative depths

    图  7  土层位移与剪切应变等值线图(Vt=2.0%)

    Figure  7.  Contours of displacements and shear strains of soil (Vt=2.0%)

    图  8  参数定义与建筑变形

    Figure  8.  Parameter definitions and building deformations

    图  9  不同隔间的总垂直位移与分位移

    Figure  9.  Total and individual vertical displacements for different bays

    图  10  不同隔间的剪切应变与变形分类

    Figure  10.  Shear strains and deformation categories for different bays

    图  11  不同Vt下各隔间的剪切应变分布

    Figure  11.  Distributions of shear strain of each bay at different Vt

    图  12  框架结构变形形状

    Figure  12.  Deformed shape of frame structure

    图  13  MVt的变化规律

    Figure  13.  Variation laws of M with Vt

    图  14  Mκ的变化规律

    Figure  14.  Variation laws of M with κ

    图  15  最大沉降和沉降槽宽度系数随隧道相对深度的变化规律

    Figure  15.  Variation laws of maximum settlements and settlement trough width factors with tunnel cover depth

    表  1  离心模型试验相似比

    Table  1.   Scaling laws of centrifuge model test

    参数 模型与原型之比
    重力加速度/(m·s-2) N∶1
    尺寸/m 1∶N
    面积/m2 1∶N2
    体积/m3 1∶N3
    力/N 1∶N2
    密度/(kg·m-3) 1∶1
    压力/Pa 1∶1
    应变 1∶1
    弹性模量/Pa 1∶1
    轴向刚度/N 1∶N2
    抗弯刚度/(N·m2) 1∶N4
    下载: 导出CSV

    表  2  离心模型试验参数(原型尺寸)

    Table  2.   Parameters of centrifuge model tests (prototype scales)

    地面情况 C/m D/m C/D zt/m 备注
    天然地面 8.0 6.1 1.3 11.0 浅隧道
    框架结构 8.0 6.1 1.3 11.0
    天然地面 12.2 6.1 2.0 15.3 深隧道
    框架结构 12.2 6.1 2.0 15.3
    下载: 导出CSV

    表  3  天然地面沉降槽参数

    Table  3.   Parameters of greenfield ground surface settlement troughs

    Id /% Vt/% C/D Vs/% Uz, max/mm i/m
    30 2.0 1.3 2.8 60.3 3.4
    1.3 2.0 2.8 41.6 5.6
    2.0 2.0 4.0 62.5 5.1
    下载: 导出CSV

    表  4  临界拉应变与破坏分类

    Table  4.   Critical tensile strain and categories of damages

    破坏分类 变形等级 εmax/10-5
    0 可忽略 0≤εmax<50
    1 非常轻微 50≤εmax<75
    2 轻微 75≤εmax<150
    3~4 中等至严重 150≤εmax<300
    4~5 严重至非常严重 300≤εmax
    下载: 导出CSV
  • [1] PECK R B. Deep excavations and tunnelling in soft ground[C]// ISSMGE. International Society for Soil Mechanics and Geotechnical Engineering. London: ISSMGE, 1969: 311-375.
    [2] 来弘鹏, 赵鑫, 康佐. 黄土地区新建地铁隧道下穿时既有地铁线路沉降控制标准[J]. 交通运输工程学报, 2018, 18(4): 63-71. doi: 10.19818/j.cnki.1671-1637.2018.04.007

    LAI Hong-peng, ZHAO Xin, KANG Zuo. Settlement control standard of existing metro line undercrossed by new metro tunnel in loess area[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 63-71. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.04.007
    [3] 张治国, 沈安鑫, 徐晨, 等. 黏性场地列车荷载影响下衬砌半渗透边界盾构隧道诱发地表固结沉降解[J]. 中国公路学报, 2022, 35(5): 116-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205011.htm

    ZHANG Zhi-guo, SHEN An-xin, XU Chen, et al. Analytical solution for surface consolidation settlements induced by shield tunneling with semi-permeable boundary conditions under train loading in viscous field[J]. China Journal of Highway and Transport, 2022, 35(5): 116-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205011.htm
    [4] 来弘鹏, 姚毅, 高强, 等. 浅埋隧道开挖引起地层位移的双极坐标求解法[J]. 交通运输工程学报, 2023, 23(4): 178-189. doi: 10.19818/j.cnki.1671-1637.2023.04.013

    LAI Hong-peng, YAO Yi, GAO Qiang, et al. Elastoplastic solution of ground deformation caused by shallow tunnel in bipolar coordinate system[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 178-189. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.04.013
    [5] 房倩, 杜建明, 王中举, 等. 盾构施工影响下砂土地层变形规律模型试验研究[J]. 中国公路学报, 2021, 34(5): 135-143, 214. doi: 10.3969/j.issn.1001-7372.2021.05.013

    FANG Qian, DU Jian-ming, WANG Zhong-ju, et al. Model experimental study on stratum deformation of shield tunnelling in sand[J]. China Journal of Highway and Transport, 2021, 34(5): 135-143, 214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.013
    [6] 房倩, 杜建明, 王赶, 等. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202003009.htm

    FANG Qian, DU Jian-ming, WANG Gan, et al. Stratum deformation laws and influence factors analysis of tunnel excavation in sand[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 67-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202003009.htm
    [7] ZHENG G, GE L, ZHANG T, et al. Volumetric behaviour of subsurface ground due to tunnelling in completely drained granular soil[J]. Computers and Geotechnics, 2019, 116: 103217. doi: 10.1016/j.compgeo.2019.103217
    [8] 曹利强, 张顶立, 房倩, 等. 软硬不均地层中盾构施工引起的地层隆沉预测[J]. 岩石力学与工程学报, 2019, 38(3): 634-648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903019.htm

    CAO Li-qiang, ZHANG Ding-li, FANG Qian, et al. Ground vertical displacements due to shield tunnelling in double-layer soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 634-648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903019.htm
    [9] 童建军, 桂登斌, 王力, 等. 基于上覆机场跑道安全的盾构隧道拱顶沉降控制基准研究[J]. 岩石力学与工程学报, 2021, 40(2): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102013.htm

    TONG Jian-jun, GUI Deng-bin, WANG Li, et al. Research on control criteria of shield tunnel crown settlement based on safety of overlying airport runway[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 382-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102013.htm
    [10] POTTS D M, ADDENBROOKE T I. A structure's influence on tunnelling-induced ground movements[J]. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 1997, 125: 109-125. doi: 10.1680/igeng.1997.29233
    [11] 苏洁, 张顶立, 周正宇, 等. 地铁隧道穿越既有桥梁安全风险评估及控制[J]. 岩石力学与工程学报, 2015, 34(增1): 3188-3195. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1073.htm

    SU Jie, ZHANG Ding-li, ZHOU Zheng-yu, et al. Safety risk assessment and control of existing bridge crossed by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3188-3195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1073.htm
    [12] 张治国, 师敏之, 张成平, 等. 类矩形盾构隧道开挖引起邻近地下管线变形研究[J]. 岩石力学与工程学报, 2019, 38(4): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904021.htm

    ZHANG Zhi-guo, SHI Min-zhi, ZHANG Cheng-ping, et al. Research on deformation of adjacent underground pipelines caused by excavation of quasi-rectangular shields[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 852-864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904021.htm
    [13] 吴锋波, 金淮, 尚彦军, 等. 城市轨道交通隧道周边建(构)筑沉降预测方法研究[J]. 岩石力学与工程学报, 2013, 32(增2): 3535-3544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2069.htm

    WU Feng-bo, JIN Huai, SHANG Yan-jun, et al. Study of building/structure settlement prediction method surrounding urban rail transit tunnel engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3535-3544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2069.htm
    [14] 谭伟姿. 盾构重叠隧道极小间距侧穿居民楼施工案例[J]. 地下空间与工程学报, 2021, 17(增1): 291-298. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1041.htm

    TAN Wei-zi. Case study of overlapped shield tunnels passing buildings in very close proximity[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 291-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1041.htm
    [15] 伍毅敏, 刘延安, 王恒, 等. 北京市隧道下穿施工引起城市路面沉降的影响规律回归分析[J]. 交通运输工程学报, 2022, 22(2): 176-186. doi: 10.19818/j.cnki.1671-1637.2022.02.013

    WU Yi-min, LIU Yan-an, WANG Heng, et al. Regression analysis of influence law of urban pavement settlement caused by underpass tunnel construction in Beijing[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 176-186. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.02.013
    [16] MARSHALL A M, FARRELL R, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Géotechnique, 2012, 62(5): 385-399.
    [17] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 315-320.
    [18] FRANZA A, MARSHALL A M, ZHOU B. Greenfield tunnelling in sands: the effects of soil density and relative depth[J]. Géotechnique, 2019, 69(4): 297-307.
    [19] 马乾瑛, 业嘉超, 蒋小慧. 考虑土拱效应的盾构隧道施工地表沉降预测研究[J]. 现代隧道技术, 2021, 58(6): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202106017.htm

    MA Qian-ying, YE Jia-chao, JIANG Xiao-hui. Study on ground settlement prediction in shield tunnel construction considering soil arching effect[J]. Modern Tunnelling Technology, 2021, 58(6): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202106017.htm
    [20] 张坤勇, 陈恕, 王耀. 盾构地表沉降的数值分析及归一化模型建立[J]. 地下空间与工程学报, 2019, 15(3): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903026.htm

    ZHANG Kun-yong, CHEN Shu, WANG Yao. Numerical simulation and normalized model of surface settlement induced by shield tunneling excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 842-849. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903026.htm
    [21] 代君, 贾强. 盾构隧道施工引起的临近地表建筑物沉降研究[J]. 山东建筑大学学报, 2019, 34(5): 44-49, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG201905008.htm

    DAI Jun, JIA Qiang. Study on adjacent buildings ground settlement caused by shield tunneling construction[J]. Journal of Shandong Jianzhu University, 2019, 34(5): 44-49, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG201905008.htm
    [22] 张治国, 李振波, 张孟喜, 等. 考虑隧道开挖与桩基相互作用的大底盘塔楼建筑变形分析[J]. 东南大学学报(自然科学版), 2021, 51(4): 603-609. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202104008.htm

    ZHANG Zhi-guo, LI Zhen-bo, ZHANG Meng-xi, et al. Analysis on deformation of tower with large chassis considering interaction between tunnel excavation and pile foundation[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 603-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202104008.htm
    [23] 戴旭, 赵少飞, 孙嵩, 等. 隧道穿越距离变化对地表框架结构变形的影响[J]. 防灾减灾工程学报, 2018, 38(3): 480-486, 497. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803011.htm

    DAI Xu, ZHAO Shao-fei, SUN Song, et al. Influence on deformations of a ground frame structure by a tunnel crossing at different distances[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 480-486, 497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803011.htm
    [24] XU J M, FRANZA A, MARSHALL A M. Centrifuge modelling study of the effect of tunnel depth on tunnel-footing interaction[C]//NUS. Asian Conference on Physical Modelling in Geotechnics (Asiafuge-2021). Singapore: NUS, 2021: 247-256.
    [25] 张宇亭, 安晓宇, 晋亚斐. 隧道开挖引起上部建筑物沉降的离心模型试验研究[J]. 岩土工程学报, 2022, 44(增2): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2022S2012.htm

    ZHANG Yu-ting, AN Xiao-yu, JIN Ya-fei. Centrifugal model tests on settlement of structures caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2022S2012.htm
    [26] FARRELL R P. Tunnelling in sands and the response of buildings[D]. Cambridge: University of Cambridge, 2010.
    [27] 徐敬民, 章定文, 刘松玉. 地表框架结构作用下隧道施工诱发的砂质地层变形[J]. 岩土工程学报, 2022, 44(4): 602-612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204002.htm

    XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204002.htm
    [28] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
    [29] XU J M, FRANZA A, MARSHALL A M. Response of framed buildings on raft foundations to tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020120.
    [30] COOK D A. Studies of settlement and crack damage in old and new facades[C]//International Masonry Society. Proceedings of the 3rd International Masonry Conference. London: International Masonry Society, 1992: 203-211.
    [31] BOSCARDIN M D, CORDING E J. Building response to excavation- induced settlement[J]. Journal of Geotechnical Engineering, 1989, 115(1): 1-21.
    [32] ZHAO Y Y. In situ soil testing for foundation performance prediction[D]. Cambridge: University of Cambridge, 2008.
    [33] BOLDINI D, LOSACCO N, FRANZA A, et al. Tunneling-induced deformation of bare frame structures on sand: numerical study of building deformations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147: 04021116.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  35
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回