-
摘要: 针对川藏线拉萨—林芝段娘盖村隧道开挖与支护施工难、拱部塌落灾害频发等工程技术难题,提出了“三台阶互补循环式开挖+型钢钢架+喷射混凝土+双层密钢网+多组锁脚锚杆(管)+衬砌壁后注浆”的开挖支护组合体系,选取漂卵石隧道2组典型断面开展支护体系受力与变形实测研究,分析了围岩荷载作用特征、支护体系受力特性以及洞内外变形规律,揭示漂卵石隧道新型支护体系承载作用机制,总结提出了相应的防控新原则。分析结果表明:围岩压力以拱部松动塌落荷载为主且沿洞周分布不均,初期支护与二次衬砌平均荷载分担比例分别为67.65%和32.35%;锁脚锚杆受力拉压兼具,优化后最大拉、压力分别减小了45.9%和20.0%;二次衬砌受力总体较小,具有足够的结构安全储备;洞身段拱顶下沉不超过15 mm,水平收敛为8~9 mm;洞口段变形不对称且受浅埋偏压和降雨条件影响显著,拱部最大下沉达52.4 mm,上、下台阶水平收敛分别为11.4和15.6 mm,在类似不利条件下应尽早施作仰拱和二次衬砌以保证施工安全;漂卵石隧道支护体系设计遵循“少扰动、强拱脚、防超挖、密钢网、勤注浆”的防控原则,能够及时控制拱部松动区扩展,调动深层围岩的自承载能力,从而达到改善支护结构受力性能和有效避免拱部塌落灾害发生的目的。Abstract: In response to the engineering and technical problems such as the extreme difficulty in excavation and support construction, and the frequent collapse disasters at the arch in the Nianggaicun Tunnel of Lhasa-Nyingchi Section on the Sichuan-Xizang Line, a combination of excavation and support system containing "three-bench complementary cyclic excavation+section steel arch+shotcrete+double-layer dense reinforcement mesh+multiple groups of feet-lock bolts (pipes)+grouting behind the lining" was proposed. Two typical sections of boulder-cobble tunnel were selected to conduct the test research on the stress and deformation of the support system. The load action characteristics of the surrounding rock, the mechanical properties of the support system, and the deformation laws inside and outside the tunnel were analyzed. The load-bearing action mechanism of the new support system was revealed for the boulder-cobble tunnel, and corresponding new prevention and control principles were summarized and proposed. Analysis results show that the surrounding rock pressure is mainly a loose collapse load at the arch and distributes unevenly around the tunnel. The average load-sharing ratios of initial support and secondary lining are 67.65% and 32.35%, respectively. The feet-lock bolts are either tensile or compressive, and the maximum tensile and compressive forces reduce by 45.9% and 20.0% after optimization, respectively. The force of the secondary lining is overall small with enough structural safety reserve. The vault subsidence is less than 15 mm, and the horizontal convergence is 8-9 mm in the tunnel body. At the tunnel portal section, the deformation is asymmetric and significantly affected by the shallow bias and rainfall conditions. The maximum settlement of the arch part reaches 52.4 mm, and the horizontal convergences of the upper and lower benches are 11.4 and 15.6 mm, respectively. Under the similar unfavorable conditions, the inverted arch and secondary lining should be constructed as early as possible to ensure the construction safety. The support system design for the boulder-cobble tunnel follows the prevention and control principles of "less disturbance, strong arch foot, anti-overbreak, dense reinforcement mesh, and frequent grouting". It can timely control the expansion of the loose zone at the arch and mobilize the self-bearing capacity of the deep surrounding rock, achieving the purpose of improving the mechanical performance of the support structure and effectively avoiding the occurrence of arch collapse disasters.
-
表 1 优化后隧道支护参数
Table 1. Optimized tunnel support parameters
复合式衬砌 支护构件 详细参数 初期支护 钢拱架 I20b工字钢,间距50 cm 喷射混凝土等级 C25 喷射混凝土厚度/cm 28 钢筋网 双层Φ8 mm,间距10×10 cm 锁脚锚杆 直径Φ51 mm,长度1.5 m,每处拱脚4根 衬砌壁后注浆 Φ51×4 mm注浆小导管,拱部及空腔区域,以充填注浆为主 二次衬砌 衬砌混凝土等级 C35钢筋混凝土 衬砌厚度/cm 55 表 2 初期支护与二次衬砌压力
Table 2. Pressures of initial support and secondary lining
测试断面 测点编号 围岩与初期支护接触压力/kPa 初期支护承担荷载比例/% 初期支护承担荷载比例平均值/% 初期支护与二次衬砌接触压力/kPa 二次衬砌承担荷载比例/% 二次衬砌承担荷载比例平均值/% 150断面 A1 22.81 69.23 67.65 10.14 30.77 32.35 A2 9.21 53.14 8.12 46.86 A3 10.23 66.64 5.12 33.36 A4 21.02 99.15 0.18 0.85 A5 40.99 89.87 4.62 10.13 A6 9.86 60.38 6.47 39.62 A7 15.67 80.94 3.69 19.06 920断面 B1 7.08 26.05 20.10 73.95 B2 96.67 86.41 15.20 13.59 B3 25.29 63.56 14.50 36.44 B4 13.68 61.65 8.51 38.35 B5 9.46 54.81 7.80 45.19 表 3 竖向围岩压力
Table 3. Vertical surrounding rock pressures
kPa 计算方法 全土柱法 普氏理论 太沙基公式 比尔鲍曼法 公路隧规 围岩压力 402.0 249.0 190.6 334.1 224.4 -
[1] 谢亦朋, 杨秀竹, 阳军生, 等. 松散堆积体隧道围岩变形破坏细观特征研究[J]. 岩土力学, 2019, 40(12): 4925-4934. doi: 10.16285/j.rsm.2019.0514XIE Yi-peng, YANG Xiu-zhu, YANG Jun-sheng, et al. Mesoscopic characteristics of deformation and failure on surrounding rocks of tunnel through loose deposits[J]. Rock and Soil Mechanics, 2019, 40(12): 4925-4934. (in Chinese) doi: 10.16285/j.rsm.2019.0514 [2] QIN Yi-wen, LAI Jin-xing, CAO Xiao-yong, et al. Experimental study on the collapse evolution law of unlined tunnel in boulder-cobble mixed formation[J]. Tunnelling and Underground Space Technology, 2023, 139: 105164. doi: 10.1016/j.tust.2023.105164 [3] LIU Chang, ZHANG Su-lei, ZHANG Ding-li, et al. Model tests on progressive collapse mechanism of a shallow subway tunnel in soft upper and hard lower composite strata[J]. Tunnelling and Underground Space Technology, 2023, 131: 104824. doi: 10.1016/j.tust.2022.104824 [4] 严健, 何川, 李栋林, 等. 冰水堆积体隧道施工过程变形与受力分析[J]. 铁道标准设计, 2017, 61(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201701014.htmYAN Jian, HE Chuan, LI Dong-lin, et al. Analysis of deformation and stress during qutwash accumulation tunnel construction[J]. Railway Standard Design, 2017, 61(1): 65-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201701014.htm [5] 彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, 39(12): 2377-2389. doi: 10.13722/j.cnki.jrme.2020.0446PENG Jian-bing, CUI Peng, ZHUANG Jian-qi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2377-2389. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0446 [6] 昝文博, 赖金星, 曹校勇, 等. 漂卵石隧道围岩力学响应与失稳破坏机制[J]. 岩石力学与工程学报, 2021, 40(8): 1643-1653. doi: 10.13722/j.cnki.jrme.2021.0095ZAN Wen-bo, LAI Jin-xing, CAO Xiao-yong, et al. Mechanical responses and instability failure mechanisms of surrounding rock of tunnels in boulder-cobble mixed stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1643-1653. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0095 [7] 何珺, 张成平, 杨公标. 砂卵石地层小净距隧道渐进性破坏过程试验研究[J]. 土木工程学报, 2015, 48(增1): 362-367. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1064.htmHE Jun, ZHANG Cheng-ping, YANG Gong-biao. Test study on progressive failure of closely spaced tunnel in sandy cobble ground[J]. China Civil Engineering Journal, 2015, 48(S1): 362-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1064.htm [8] 李英杰, 张顶立, 宋义敏, 等. 软弱破碎深埋隧道围岩渐进性破坏试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1138-1147. doi: 10.3969/j.issn.1000-6915.2012.06.007LI Ying-jie, ZHANG Ding-li, SONG Yi-min, et al. Experimental research of progressive damage of surrounding rock for soft fractured deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1138-1147. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.007 [9] TIAN Yu, QAYTMAS A, LU De-chun, et al. Stress path of the surrounding soil during tunnel excavation: an experimental study[J]. Transportation Geotechnics, 2023, 38: 100917. [10] 曹校勇, 冯志华, 史彦文, 等. 漂卵石隧道自进式中空注浆锚杆力学性能测试分析[J]. 现代隧道技术, 2019, 56(3): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201903020.htmCAO Xiao-yong, FENG Zhi-hua, SHI Yan-wen, et al. Field test and analysis of mechanical behaviors of the self-drilling hollow grouting anchor bolt for the tunnel in sandy pebble stratum[J]. Modern Tunnelling Technology, 2019, 56(3): 125-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201903020.htm [11] QIN Yi-wen, LAI Jin-xing, GAO Gui-qing, et al. Failure analysis and countermeasures of a tunnel constructed in loose granular stratum by shallow tunnelling method[J]. Engineering Failure Analysis, 2022, 141: 106667. [12] 宋修元. 富水砂卵石地层洞内深孔定点填充注浆加固技术浅析[J]. 现代隧道技术, 2011, 48(3): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201103025.htmSONG Xiu-yuan. Analysis ondeep hole grouting consolidation for tunnels in water-rich sandy gravel stratum[J]. Modern Tunnelling Technology, 2011, 48(3): 132-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201103025.htm [13] 哈吉章, 黄威望, 邵大鹏. 砂卵石地层出水隧道施工综合技术[J]. 现代隧道技术, 2011, 48(2): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102025.htmHA Ji-zhang, HUANG Wei-wang, SHAO Da-peng. Comprehensive construction techniques for a tunnel in water-soaked gravel and sand[J]. Modern Tunnelling Technology, 2011, 48(2): 128-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102025.htm [14] LIU Tong, XIE Yuan, FENG Zhi-hua, et al. Better understanding the failure modes of tunnels excavated in the boulder-cobble mixed strata by distinct element method[J]. Engineering Failure Analysis, 2020, 116: 104712. [15] 王俊, 王闯, 何川, 等. 砂卵石地层土压盾构掘进掌子面稳定性室内试验与三维离散元仿真研究[J]. 岩土力学, 2018, 39(8): 3038-3046. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808039.htmWANG Jun, WANG Chuang, HE Chuan, et al. Heading stability analysis of EPB shield tunnel in sandy cobble ground using laboratory test and 3D DEM simulation[J]. Rock and Soil Mechanics, 2018, 39(8): 3038-3046. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808039.htm [16] 昝文博, 赖金星, 张玉伟, 等. 松散堆积体隧道围岩空间位移特征分析[J]. 解放军理工大学学报(自然科学版), 2017, 18(3): 270-276. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201703011.htmZAN Wen-bo, LAI Jin-xing, ZHANG Yu-wei, et al. Space displacement characteristics of surrounding rock for tunnel constructed through loose deposits[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2017, 18(3): 270-276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201703011.htm [17] 昝文博, 赖金星, 张玉伟, 等. 堆积体隧道围岩及支衬体系空间力学特性[J]. 公路, 2017, 62(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201702046.htmZAN Wen-bo, LAI Jin-xing, ZHANG Yu-wei, et al. Analysis of spatial mechanic characteristics of surrounding rock and support system for a tunnel constructed through deposits[J]. Highway, 2017, 62(2): 244-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201702046.htm [18] DU Xiu-li, ZHANG Pei, JIN Liu, et al. A multi-scale analysis method for the simulation of tunnel excavation in sandy cobble stratum[J]. Tunnelling and Underground Space Technology, 2019, 83: 220-230. [19] WANG Shu-ren, LI Chun-liu, WANG Yong-guang, et al. Evolution characteristics analysis of pressure-arch in a double-arch tunnel[J]. Tehnicki Vjesnik, 2016, 23(1): 181-189. [20] WANG Shu-ren, WU Xiao-gang, ZHAO Yan-hai, et al. Mechanical performances of pressure arch in thick bedrock during shallow coal mining[J]. Geofluids, 2018, 2018: 2419659. [21] KONG Xiao-xuan, LIU Quan-sheng, ZHANG Qian-bing, et al. A method to estimate the pressure arch formation above underground excavation in rock mass[J]. Tunnelling and Underground Space Technology, 2018, 71: 382-390. [22] WANG Xiao-qing, KANG Hong-pu, GAO Fu-qiang. Numerical study on the formation of pressure arch in bolted gravel plate[J]. Computers and Geotechnics, 2021, 130: 103933. [23] 昝文博, 赖金星, 邱军领, 等. 松散堆积体隧道压力拱效应试验与数值模拟[J]. 岩土工程学报, 2021, 43(9): 1666-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109016.htmZAN Wen-bo, LAI Jin-xing, QIU Jun-ling, et al. Experiments and numerical simulations on pressure-arch effect for a tunnelin loose deposits[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1666-1674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109016.htm [24] LUO Yan-bin, CHEN Jian-xun, SHI Zhou, et al. Mechanical characteristics of primary support of large span loess highway tunnel: a case study in Shaanxi Province, Loess Plateau, NW China primary[J]. Tunnelling and Underground Space Technology, 2020, 104: 103532. [25] 陈丽俊, 陈建勋, 罗彦斌, 等. 黄土地层锁脚锚管横向地基反力系数[J]. 交通运输工程学报, 2021, 21(4): 106-115. doi: 10.19818/j.cnki.1671-1637.2021.04.007CHEN Li-jun, CHEN Jian-xun, LUO Yan-bin, et al. Lateral foundation reaction coefficient of feet-lock pipe in loess stratum[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 106-115. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.007 [26] 陈丽俊, 陈建勋, 罗彦斌, 等. 深埋大跨度绿泥石片岩隧道变形规律及合理预留变形量[J]. 中国公路学报, 2021, 34(6): 147-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106015.htmCHEN Li-jun, CHEN Jian-xun, LUO Yan-bin, et al. Deformation law and reasonable reserved deformation of deep large-span chlorite schist tunnel[J]. China Journal of Highway and Transport, 2021, 34(6): 147-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106015.htm [27] YE Fei, YANG Tao, MAO Jia-hua, et al. Half-spherical surface diffusion model of shield tunnel back-fill grouting based on infiltration effect[J]. Tunnelling and Underground Space Technology, 2019, 83: 274-281. [28] 来弘鹏, 谢永利, 刘苗, 等. 黄土地区浅埋暗挖地铁隧道衬砌受力分析[J]. 岩土工程学报, 2011, 33(8): 1167-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108005.htmLAI Hong-peng, XIE Yong-li, LIU Miao, et al. Mechanical characteristics for linings of shallow excavation metro tunnel in loess region[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1167-1172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108005.htm [29] 赖金星, 牛方园, 樊浩博, 等. 浅埋黄土隧道三层支护结构力学特性现场测试[J]. 岩土力学, 2015, 36(6): 1769-1775, 1783. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506031.htmLAI Jin-xing, NIU Fang-yuan, FAN Hao-bo, et al. Field test of mechanical characteristics of three-layer support structure of shallow loess tunnel[J]. Rock and Soil Mechanics, 2015, 36(6): 1769-1775, 1783. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506031.htm [30] 赖金星, 王开运, 来弘鹏, 等. 软弱黄土隧道支护结构力学特性测试[J]. 交通运输工程学报, 2015, 15(3): 41-51. doi: 10.19818/j.cnki.1671-1637.2015.03.006LAI Jin-xing, WANG Kai-yun, LAI Hong-peng, et al. Mechanical characteristic test of tunnel support structure in weak loess stratum[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 41-51. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.03.006 [31] 李奥, 董飞, 黄俊, 等. 坡面平行型洞口段隧道塌方演化机理研究[J]. 铁道勘察, 2021, 47(6): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202106016.htmLI Ao, DONG Fei, HUANG Jun, et al. Collapse evolution mechanism of tunnel at portal section parallel with slope[J]. Railway Investigation and Surveying, 2021, 47(6): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202106016.htm [32] XIAO Jian-zhang, DAI Fu-chu, WEI Ying-qi, et al. Cracking mechanism of secondary lining for a shallow and asymmetrically-loaded tunnel in loose deposits[J]. Tunnelling and Underground Space Technology, 2014, 43(7): 232-240.