Improved transient electromagnetic radar method of void identification behind tunnel lining
-
摘要: 针对衬砌背后脱空检测图像特征不显著、脱空定位及范围识别准确性较低等技术难题,以瞬变电磁理论为基础,结合隧道衬砌结构检测需求,提出了隧道衬砌背后脱空识别的改进瞬变电磁雷达法;通过改善发射系统关断时间增大探测深度;利用接收线圈等效电路及弱信号增强算法提升成像分辨率;在剔除强干扰信号并增大发射磁矩基础上,采用圆滑滤波处理及多周期叠加采样抑制数据噪声;基于视电阻率差异建立衬砌结构相关介质的TER图谱,通过不同类型混凝土构件的多种组合进行室内衬砌缺陷模拟检测试验,初步评估改进TER法检测衬砌背后脱空的可行性及其检测精度;在北京市地铁6号线郝北隧道进行了现场实际检测与应用,综合对比了TER检测图像与管片钻芯取样结果,以验证改进TER法检测衬砌背后脱空的有效性。研究结果表明:改进TER法具有较高的成像分辨率与较好的缺陷辨识效果,可直观清晰地反映衬砌背后脱空缺陷的实际特征,能有效识别衬砌厚度、钢筋埋深、衬砌背后脱空及衬砌内部空洞的具体位置及范围;可定量化描述10~20 cm的脱空缺陷,并对小于10 cm的脱空缺陷进行定位及脱空量级判定,对于衬砌背后深度达30 cm以上目标体的识别结果具有较好的参考性;改进TER法受金属介质干扰较小,在大范围连续性检测中,可对脱空范围大于30 cm的衬砌背后脱空缺陷进行精确定位。Abstract: In view of the technical problems of detection behind the tunnel lining such as insignificant image features, and the low accuracies of void location and range identification, an improved transient electromagnetic radar (TER) method to detect the void behind the lining was proposed based on the transient electromagnetic theory and the detection requirements of tunnel lining structure. The detection depth was increased by improving the turn-off time of the transmitting system. The image resolution was improved by using the equivalent circuit of receiving coil and weak signal enhancement algorithm. On the basis of eliminating the strong interference signal and increasing the transmitting magnetic moment, the data noise was suppressed by smooth filtering and multi-period superimposed sampling. Based on the difference in the apparent resistivity, the TER map of the relevant medium of lining structure was established, and the indoor lining defect simulation test was carried out through the different combinations of various concrete components. The detection accuracy and feasibility of the improved TER method to detect the void behind the lining were preliminarily evaluated. A field application was carried out in Haobei Tunnel of Beijing Metro Line 6. By comparing the test results of TER images with the sampling results of drilling, the effectiveness of the improved TER method to detect the void behind the lining was further verified. Analysis results show that the improved TER method has higher imaging resolution and better defect identification effect. It can directly and clearly reflect the actual characteristics of the void defects behind the lining and effectively identify lining thickness, buried depth of steel bar, and specific locations and scopes of the voids behind and inside the lining. It can quantitatively describe 10-20 cm voids and locate and determine the magnitude of the voids less than 10 cm. Besides, it has a good reference for the identification result of the target body with a depth of more than 30 cm behind the lining. Meanwhile, the improved TER method is less disturbed by metal mediums and can accurately locate the void defects behind the lining with a void range greater than 30 cm in a wide range of continuous detection.
-
表 1 TER仪器参数
Table 1. Equipment parameters of TER
发射机参数 断电时间/μs < 100 发射频率/Hz 0.062 5~222.000 0 发射方式 测量轮 触发方式 上升沿 供电电流/A 0~10 电流波形 双极性方波 接收机参数 采样频率/kHz 4.096~52.734 A/D分辨率/Bit 24 动态范围/dB 175 延时窗口/ms 1 000 叠加次数 1~9 999 同步方式 电缆 表 2 组合模型介质参数
Table 2. Medium parameters of combination model
介质 电阻率/(Ω·m) 尺寸/cm 钢筋 1.0×10-7 D=0.8 混凝土 100 30×30×30(10) 脱空(空气) 1 000 000(∞) D1=10, D2=6, 30×25(20) 铁板 9.7×10-8 50.0×30.0×0.3 表 3 不同组合形式的视电阻率
Table 3. Apparent resistivities of different combination forms
距离/m 视电阻率/(Ω·m) 组合形式1 组合形式2 0.15 21.361 23.389 0.30~0.50 25.256 21.361 0.60~1.10 21.361 19.522/25.256 0.70 23.389 21.361 0.90~1.40 19.522/25.256 21.361 1.40~1.60 21.361 25.256 1.60 23.389 21.361 1.90 21.361 23.389 -
[1] 董飞, 房倩, 张顶立, 等. 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50(6): 104-113. doi: 10.15951/j.tmgcxb.2017.06.012DONG Fei, FANG Qian, ZHANG Ding-li, et al. Analysis on defects of operational metro tunnels in Beijing[J]. China Civil Engineering Journal, 2017, 50(6): 104-113. (in Chinese) doi: 10.15951/j.tmgcxb.2017.06.012 [2] 汪波, 李天斌, 何川, 等. 衬砌减薄对隧道结构承载力影响的模型试验研究[J]. 铁道学报, 2013, 35(2): 106-114. doi: 10.3969/j.issn.1001-8360.2013.02.016WANG Bo, LI Tian-bin, HE Chuan, et al. Model test of effect of lining thinning on tunnel structure bearing capacity[J]. Journal of the China Railway Society, 2013, 35(2): 106-114. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.02.016 [3] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.003 [4] DAVIS A G, LIM M K, PETERSEN C G. Rapid and economical evaluation of concrete tunnel linings with impulse response and impulse radar non-destructive methods[J]. NDT and E International, 2005, 38(3): 181-186. doi: 10.1016/j.ndteint.2004.03.011 [5] ALANI A M, TOSTI F. GPR applications in structural detailing of a major tunnel using different frequency antenna systems[J]. Construction and Building Materials, 2018, 158: 1111-1122. doi: 10.1016/j.conbuildmat.2017.09.100 [6] 杨艳青, 贺少辉, 江波, 等. 铁路隧道整体式衬砌地质雷达检测模拟试验研究[J]. 铁道学报, 2012, 34(9): 93-98. doi: 10.3969/j.issn.1001-8360.2012.09.016YANG Yan-qing, HE Shao-hui, JIANG Bo, et al. Simulation test of GPR detection of integral lining of railway tunnel[J]. Journal of the China Railway Society, 2012, 34(9): 93-98. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.09.016 [7] YU Qi-ming, ZHOU Hui-lin, WANG Yu-hao, et al. Quality monitoring of metro grouting behind segment using ground penetrating radar[J]. Construction and Building Materials, 2016, 110(24): 189-200. [8] PORSANI J L, RUY Y B, RAMOS F P, et al. GPR applied to mapping utilities along the route of the Line 4 (yellow) subway tunnel construction in São Paulo City, Brazil[J]. Journal of Applied Geophysics, 2012, 80: 25-31. doi: 10.1016/j.jappgeo.2012.01.001 [9] YASUDA N, TSUKADA K, ASAKURA T. Elastic solutions for circular tunnel with void behind lining[J]. Tunnelling and Underground Space Technology, 2017, 70: 274-285. doi: 10.1016/j.tust.2017.08.032 [10] WHITE J, HURLEBAUS S, SHOKOUHI P, et al. Use of ultrasonic tomography to detect structural impairment in tunnel linings: validation study and field evaluation[J]. Transportation Research Record, 2014(2407): 20-31. [11] VOZNESENSKⅡ A S, NABATOV V V. Identification of filler type in cavities behind tunnel linings during a subway tunnel surveys using the impulse-response method[J]. Tunnelling and Underground Space Technology, 2017, 70: 254-261. doi: 10.1016/j.tust.2017.07.010 [12] KONISHI S, KAWAKAMI K, TAGUCHI M. Inspection method with infrared thermometry for detect void in subway tunnel lining[J]. Procedia Engineering, 2016, 165: 474-483. doi: 10.1016/j.proeng.2016.11.723 [13] LALAGVE A, LEBENS M A, HOFF I, et al. Detection of rockfall on a tunnel concrete lining with ground-penetrating radar (GPR)[J]. Rock Mechanics and Rock Engineering, 2016, 49: 2811-2823. doi: 10.1007/s00603-016-0943-y [14] AFSHANI A, KAWAKAMI K, KONISHI S, et al. Study of infrared thermal application for detecting defects within tunnel lining[J]. Tunnelling and Underground Space Technology, 2019, 86: 186-197. doi: 10.1016/j.tust.2019.01.013 [15] 王兴春, 邓晓红, 陈晓东, 等. 基于高温超导的瞬变电磁法在青城子矿集区的应用[J]. 地球科学, 2021, 46(5): 1871-1880. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202105026.htmWANG Xing-chun, DENG Xiao-hong, CHEN Xiao-dong, et al. Application effect of TEM based on high temperature superconducting sensor in Qingchengzi Ore-Concentrated Area[J]. Earth Science, 2021, 46(5): 1871-1880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202105026.htm [16] SIMARD P T, CHESNAUX R, ROULEAU A, et al. Imaging quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments[J]. Journal of Applied Geophysics, 2015, 119: 36-50. doi: 10.1016/j.jappgeo.2015.05.006 [17] SALARIEH B, JEEWANTHA DE SILVA H M, KORDI B. Electromagnetic transient modeling of grounding electrodes buried in frequency dependent soil with variable water content[J]. Electric Power Systems Research, 2020, 189: 106595. doi: 10.1016/j.epsr.2020.106595 [18] LANE JR J W, BRIGGS M A, MAURYA P K, et al. Characterizing the diverse hydrogeology underlying rivers and estuaries using new floating transient electromagnetic methodology[J]. Science of the Total Environment, 2020, 740: 140074. doi: 10.1016/j.scitotenv.2020.140074 [19] EZERSKY M G, FRUMKIN A. Evaluation and mapping of Dead Sea coastal aquifers salinity using transient electromagnetic (TEM) resistivity measurements[J]. Comptes Rendus Geoscience, 2017, 349(1): 1-11. doi: 10.1016/j.crte.2016.08.001 [20] LI Wen-han, WANG Jia-xing, GUO Xu, et al. A new transient electromagnetic prospecting method in TBM tunnel environment[J]. Journal of Applied Geophysics, 2022, 196: 104492. doi: 10.1016/j.jappgeo.2021.104492 [21] JIANG Zhi-hai, YUE Jian-hua, YU Jing-cun. Experiment in metal disturbance during advanced detection using a transient electromagnetic method in coal mines[J]. Mining Science and Technology (China), 2010, 20(6): 861-863. doi: 10.1016/S1674-5264(09)60296-9 [22] TANG Hong-zhi, YANG Hai-yan, LU Guang-yin, et al. Small multi-turn coils based on transient electromagnetic method for coal mine detection[J]. Journal of Applied Geophysics, 2019, 169: 165-173. doi: 10.1016/j.jappgeo.2019.06.021 [23] LIN Fang, CHEN Shou-gen, MA Guo-wei. Transient electromagnetic detection method in water-sealed underground storage caverns[J]. Underground Space, 2016, 1(1): 44-61. doi: 10.1016/j.undsp.2016.07.001 [24] 胡雄武, 徐虎, 彭苏萍, 等. 煤层采动覆岩富水性变化规律瞬变电磁法动态监测[J]. 煤炭学报, 2021, 46(5): 1576-1586. doi: 10.13225/j.cnki.jccs.st21.8220HU Xiong-wu, XU Hu, PENG Su-ping, et al. Dynamic monitoring of water abundance of overlying strata in coal seam by transient electromagnetic method[J]. Journal of China Coal Society, 2021, 46(5): 1576-1586. (in Chinese) doi: 10.13225/j.cnki.jccs.st21.8220 [25] 孙晋江, 马志超, 廉玉广, 等. 瞬变电磁法在采空区煤层气抽采井选址中的应用研究[J]. 煤炭技术, 2021, 40(5): 81-84. doi: 10.13301/j.cnki.ct.2021.05.022SUN Jin-jiang, MA Zhi-chao, LIAN Yu-guang, et al. Application of transient electromagnetic method in site selection of coalbed methane extraction well in goaf[J]. Coal Technology, 2021, 40(5): 81-84. (in Chinese) doi: 10.13301/j.cnki.ct.2021.05.022 [26] 钟世航, 孙宏志, 李术才, 等. 隧道及地下工程施工中岩溶裂隙水及断层、溶洞等隐患的探查、预报[J]. 岩石力学与工程学报, 2012, 31(增1): 3298-3327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1094.htmZHONG Shi-hang, SUN Hong-zhi, LI Shu-cai, et al. Detection and forecasting for hidden danger of karst fissure water and other geological disasters during construction of tunnels and underground projects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3298-3327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1094.htm [27] 李术才, 孙怀凤, 李貅, 等. 隧道瞬变电磁超前预报平行磁场响应探测方法[J]. 岩石力学与工程学报, 2014, 33(7): 1309-1318. doi: 10.13722/j.cnki.jrme.2014.07.002LI Shu-cai, SUN Huai-feng, LI Xiu, et al. Advanced geology prediction with parallel transient electromagnetic detection in tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1309-1318. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.07.002 [28] YE Zi-jian, ZHANG Cheng-ping, YE Ying, et al. Application of transient electromagnetic radar in quality evaluation of tunnel composite lining[J]. Construction and Building Materials, 2020, 240: 117958. doi: 10.1016/j.conbuildmat.2019.117958 [29] 张素磊, 陈淮, 王亚琼. 基于灰色突变理论的隧道衬砌裂缝诊断模型[J]. 交通运输工程学报, 2015, 15(3): 34-40. doi: 10.3969/j.issn.1671-1637.2015.03.006ZHANG Su-lei, CHEN Huai, WANG Ya-qiong. Diagnostic model of crack for tunnel lining based on gray and catastrophe theories[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 34-40. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.006 [30] 王柱, 董长松, 韩常领, 等. 高寒冻融环境下隧道结构服役性能预测模型[J]. 交通运输工程学报, 2016, 16(4): 133-140. doi: 10.3969/j.issn.1671-1637.2016.04.014WANG Zhu, DONG Chang-song, HAN Chang-ling, et al. Service performance prediction model of tunnel structure in alpine freezing-thawing environment[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 133-140. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.04.014 [31] MORADI P, ASADI M J, EBRAHIMZADEH N, et al. Ilam tunnels inspection, maintenance, and rehabilitation: a case study[J]. Tunnelling and Underground Space Technology, 2021, 110: 103814. doi: 10.1016/j.tust.2021.103814 [32] HSU C S. Theory of index and a generalized Nyquist criterion[J]. International Journal of Non-Linear Mechanics, 1980, 15: 349-54. doi: 10.1016/0020-7462(80)90020-7