留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道衬砌背后脱空识别的改进瞬变电磁雷达法

耿庆桥 贾元华 叶英 王登科

耿庆桥, 贾元华, 叶英, 王登科. 隧道衬砌背后脱空识别的改进瞬变电磁雷达法[J]. 交通运输工程学报, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016
引用本文: 耿庆桥, 贾元华, 叶英, 王登科. 隧道衬砌背后脱空识别的改进瞬变电磁雷达法[J]. 交通运输工程学报, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016
GENG Qing-qiao, JIA Yuan-hua, YE Ying, WANG Deng-ke. Improved transient electromagnetic radar method of void identification behind tunnel lining[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016
Citation: GENG Qing-qiao, JIA Yuan-hua, YE Ying, WANG Deng-ke. Improved transient electromagnetic radar method of void identification behind tunnel lining[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016

隧道衬砌背后脱空识别的改进瞬变电磁雷达法

doi: 10.19818/j.cnki.1671-1637.2023.04.016
基金项目: 

国家自然科学基金项目 52178379

中央高校基本科研业务费专项资金项目 2021YJS080

详细信息
    作者简介:

    耿庆桥(1994-),男,甘肃庆阳人,北京交通大学工学博士研究生,从事地下工程研究

    贾元华(1962-),男,山西广灵人,北京交通大学教授,工学博士

  • 中图分类号: U25

Improved transient electromagnetic radar method of void identification behind tunnel lining

Funds: 

National Natural Science Foundation of China 52178379

Fundamental Research Funds for the Central Universities 2021YJS080

More Information
  • 摘要: 针对衬砌背后脱空检测图像特征不显著、脱空定位及范围识别准确性较低等技术难题,以瞬变电磁理论为基础,结合隧道衬砌结构检测需求,提出了隧道衬砌背后脱空识别的改进瞬变电磁雷达法;通过改善发射系统关断时间增大探测深度;利用接收线圈等效电路及弱信号增强算法提升成像分辨率;在剔除强干扰信号并增大发射磁矩基础上,采用圆滑滤波处理及多周期叠加采样抑制数据噪声;基于视电阻率差异建立衬砌结构相关介质的TER图谱,通过不同类型混凝土构件的多种组合进行室内衬砌缺陷模拟检测试验,初步评估改进TER法检测衬砌背后脱空的可行性及其检测精度;在北京市地铁6号线郝北隧道进行了现场实际检测与应用,综合对比了TER检测图像与管片钻芯取样结果,以验证改进TER法检测衬砌背后脱空的有效性。研究结果表明:改进TER法具有较高的成像分辨率与较好的缺陷辨识效果,可直观清晰地反映衬砌背后脱空缺陷的实际特征,能有效识别衬砌厚度、钢筋埋深、衬砌背后脱空及衬砌内部空洞的具体位置及范围;可定量化描述10~20 cm的脱空缺陷,并对小于10 cm的脱空缺陷进行定位及脱空量级判定,对于衬砌背后深度达30 cm以上目标体的识别结果具有较好的参考性;改进TER法受金属介质干扰较小,在大范围连续性检测中,可对脱空范围大于30 cm的衬砌背后脱空缺陷进行精确定位。

     

  • 图  1  TEM基本原理

    Figure  1.  Basic principle of TEM

    图  2  TER组成

    Figure  2.  Composition of TER

    图  3  TER工作流程

    Figure  3.  Workflow of TER

    图  4  发射机电信号与关断时间的关系

    Figure  4.  Relationships between transmitter electrical signal and turn-off time

    图  5  感应电压与关断时间的关系

    Figure  5.  Relationships between induced voltage and turn-off time

    图  6  接收线圈等效电路

    Figure  6.  Equivalent circuits of receiving coil

    图  7  钢筋混凝土楼板TER图像

    Figure  7.  TER images of reinforced concrete floor

    图  8  不同线圈特征的衰减曲线

    Figure  8.  Attenuation curves of different coil characteristics

    图  9  单测道感应电压衰减曲线

    Figure  9.  Induced voltage attenuation curves of single channel

    图  10  不同介质的TER图谱

    Figure  10.  TER spectra of different media

    图  11  不同介质的视电阻率曲线

    Figure  11.  Apparent resistivity curves of different media

    图  12  衬砌缺陷模拟混凝土构件

    Figure  12.  Concrete components for lining defects simulation

    图  13  组合形式1及缺陷细部特征

    Figure  13.  Combination form 1 and defects details

    图  14  组合形式2及缺陷细部特征

    Figure  14.  Combination form 2 and defects details

    图  15  模拟试验测线

    Figure  15.  Measuring line for simulation test

    图  16  组合形式1检测结果

    Figure  16.  Detection result of combination form 1

    图  17  组合形式2检测结果

    Figure  17.  Detection result of combination form 2

    图  18  衬砌缺陷组合模型深度-视电阻率曲线

    Figure  18.  Depth-apparent resistivity curves of lining defects combination model

    图  19  TER测线

    Figure  19.  TER measuring lines

    图  20  管片衬砌TER检测图像

    Figure  20.  TER detection image of segment lining

    图  21  边墙衬砌TER检测图像

    Figure  21.  TER detection image of side wall lining

    图  22  钻芯取样结果

    Figure  22.  Drilling sampling results

    表  1  TER仪器参数

    Table  1.   Equipment parameters of TER

    发射机参数 断电时间/μs < 100
    发射频率/Hz 0.062 5~222.000 0
    发射方式 测量轮
    触发方式 上升沿
    供电电流/A 0~10
    电流波形 双极性方波
    接收机参数 采样频率/kHz 4.096~52.734
    A/D分辨率/Bit 24
    动态范围/dB 175
    延时窗口/ms 1 000
    叠加次数 1~9 999
    同步方式 电缆
    下载: 导出CSV

    表  2  组合模型介质参数

    Table  2.   Medium parameters of combination model

    介质 电阻率/(Ω·m) 尺寸/cm
    钢筋 1.0×10-7 D=0.8
    混凝土 100 30×30×30(10)
    脱空(空气) 1 000 000(∞) D1=10, D2=6, 30×25(20)
    铁板 9.7×10-8 50.0×30.0×0.3
    下载: 导出CSV

    表  3  不同组合形式的视电阻率

    Table  3.   Apparent resistivities of different combination forms

    距离/m 视电阻率/(Ω·m)
    组合形式1 组合形式2
    0.15 21.361 23.389
    0.30~0.50 25.256 21.361
    0.60~1.10 21.361 19.522/25.256
    0.70 23.389 21.361
    0.90~1.40 19.522/25.256 21.361
    1.40~1.60 21.361 25.256
    1.60 23.389 21.361
    1.90 21.361 23.389
    下载: 导出CSV
  • [1] 董飞, 房倩, 张顶立, 等. 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50(6): 104-113. doi: 10.15951/j.tmgcxb.2017.06.012

    DONG Fei, FANG Qian, ZHANG Ding-li, et al. Analysis on defects of operational metro tunnels in Beijing[J]. China Civil Engineering Journal, 2017, 50(6): 104-113. (in Chinese) doi: 10.15951/j.tmgcxb.2017.06.012
    [2] 汪波, 李天斌, 何川, 等. 衬砌减薄对隧道结构承载力影响的模型试验研究[J]. 铁道学报, 2013, 35(2): 106-114. doi: 10.3969/j.issn.1001-8360.2013.02.016

    WANG Bo, LI Tian-bin, HE Chuan, et al. Model test of effect of lining thinning on tunnel structure bearing capacity[J]. Journal of the China Railway Society, 2013, 35(2): 106-114. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.02.016
    [3] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003

    WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.003
    [4] DAVIS A G, LIM M K, PETERSEN C G. Rapid and economical evaluation of concrete tunnel linings with impulse response and impulse radar non-destructive methods[J]. NDT and E International, 2005, 38(3): 181-186. doi: 10.1016/j.ndteint.2004.03.011
    [5] ALANI A M, TOSTI F. GPR applications in structural detailing of a major tunnel using different frequency antenna systems[J]. Construction and Building Materials, 2018, 158: 1111-1122. doi: 10.1016/j.conbuildmat.2017.09.100
    [6] 杨艳青, 贺少辉, 江波, 等. 铁路隧道整体式衬砌地质雷达检测模拟试验研究[J]. 铁道学报, 2012, 34(9): 93-98. doi: 10.3969/j.issn.1001-8360.2012.09.016

    YANG Yan-qing, HE Shao-hui, JIANG Bo, et al. Simulation test of GPR detection of integral lining of railway tunnel[J]. Journal of the China Railway Society, 2012, 34(9): 93-98. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.09.016
    [7] YU Qi-ming, ZHOU Hui-lin, WANG Yu-hao, et al. Quality monitoring of metro grouting behind segment using ground penetrating radar[J]. Construction and Building Materials, 2016, 110(24): 189-200.
    [8] PORSANI J L, RUY Y B, RAMOS F P, et al. GPR applied to mapping utilities along the route of the Line 4 (yellow) subway tunnel construction in São Paulo City, Brazil[J]. Journal of Applied Geophysics, 2012, 80: 25-31. doi: 10.1016/j.jappgeo.2012.01.001
    [9] YASUDA N, TSUKADA K, ASAKURA T. Elastic solutions for circular tunnel with void behind lining[J]. Tunnelling and Underground Space Technology, 2017, 70: 274-285. doi: 10.1016/j.tust.2017.08.032
    [10] WHITE J, HURLEBAUS S, SHOKOUHI P, et al. Use of ultrasonic tomography to detect structural impairment in tunnel linings: validation study and field evaluation[J]. Transportation Research Record, 2014(2407): 20-31.
    [11] VOZNESENSKⅡ A S, NABATOV V V. Identification of filler type in cavities behind tunnel linings during a subway tunnel surveys using the impulse-response method[J]. Tunnelling and Underground Space Technology, 2017, 70: 254-261. doi: 10.1016/j.tust.2017.07.010
    [12] KONISHI S, KAWAKAMI K, TAGUCHI M. Inspection method with infrared thermometry for detect void in subway tunnel lining[J]. Procedia Engineering, 2016, 165: 474-483. doi: 10.1016/j.proeng.2016.11.723
    [13] LALAGVE A, LEBENS M A, HOFF I, et al. Detection of rockfall on a tunnel concrete lining with ground-penetrating radar (GPR)[J]. Rock Mechanics and Rock Engineering, 2016, 49: 2811-2823. doi: 10.1007/s00603-016-0943-y
    [14] AFSHANI A, KAWAKAMI K, KONISHI S, et al. Study of infrared thermal application for detecting defects within tunnel lining[J]. Tunnelling and Underground Space Technology, 2019, 86: 186-197. doi: 10.1016/j.tust.2019.01.013
    [15] 王兴春, 邓晓红, 陈晓东, 等. 基于高温超导的瞬变电磁法在青城子矿集区的应用[J]. 地球科学, 2021, 46(5): 1871-1880. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202105026.htm

    WANG Xing-chun, DENG Xiao-hong, CHEN Xiao-dong, et al. Application effect of TEM based on high temperature superconducting sensor in Qingchengzi Ore-Concentrated Area[J]. Earth Science, 2021, 46(5): 1871-1880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202105026.htm
    [16] SIMARD P T, CHESNAUX R, ROULEAU A, et al. Imaging quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments[J]. Journal of Applied Geophysics, 2015, 119: 36-50. doi: 10.1016/j.jappgeo.2015.05.006
    [17] SALARIEH B, JEEWANTHA DE SILVA H M, KORDI B. Electromagnetic transient modeling of grounding electrodes buried in frequency dependent soil with variable water content[J]. Electric Power Systems Research, 2020, 189: 106595. doi: 10.1016/j.epsr.2020.106595
    [18] LANE JR J W, BRIGGS M A, MAURYA P K, et al. Characterizing the diverse hydrogeology underlying rivers and estuaries using new floating transient electromagnetic methodology[J]. Science of the Total Environment, 2020, 740: 140074. doi: 10.1016/j.scitotenv.2020.140074
    [19] EZERSKY M G, FRUMKIN A. Evaluation and mapping of Dead Sea coastal aquifers salinity using transient electromagnetic (TEM) resistivity measurements[J]. Comptes Rendus Geoscience, 2017, 349(1): 1-11. doi: 10.1016/j.crte.2016.08.001
    [20] LI Wen-han, WANG Jia-xing, GUO Xu, et al. A new transient electromagnetic prospecting method in TBM tunnel environment[J]. Journal of Applied Geophysics, 2022, 196: 104492. doi: 10.1016/j.jappgeo.2021.104492
    [21] JIANG Zhi-hai, YUE Jian-hua, YU Jing-cun. Experiment in metal disturbance during advanced detection using a transient electromagnetic method in coal mines[J]. Mining Science and Technology (China), 2010, 20(6): 861-863. doi: 10.1016/S1674-5264(09)60296-9
    [22] TANG Hong-zhi, YANG Hai-yan, LU Guang-yin, et al. Small multi-turn coils based on transient electromagnetic method for coal mine detection[J]. Journal of Applied Geophysics, 2019, 169: 165-173. doi: 10.1016/j.jappgeo.2019.06.021
    [23] LIN Fang, CHEN Shou-gen, MA Guo-wei. Transient electromagnetic detection method in water-sealed underground storage caverns[J]. Underground Space, 2016, 1(1): 44-61. doi: 10.1016/j.undsp.2016.07.001
    [24] 胡雄武, 徐虎, 彭苏萍, 等. 煤层采动覆岩富水性变化规律瞬变电磁法动态监测[J]. 煤炭学报, 2021, 46(5): 1576-1586. doi: 10.13225/j.cnki.jccs.st21.8220

    HU Xiong-wu, XU Hu, PENG Su-ping, et al. Dynamic monitoring of water abundance of overlying strata in coal seam by transient electromagnetic method[J]. Journal of China Coal Society, 2021, 46(5): 1576-1586. (in Chinese) doi: 10.13225/j.cnki.jccs.st21.8220
    [25] 孙晋江, 马志超, 廉玉广, 等. 瞬变电磁法在采空区煤层气抽采井选址中的应用研究[J]. 煤炭技术, 2021, 40(5): 81-84. doi: 10.13301/j.cnki.ct.2021.05.022

    SUN Jin-jiang, MA Zhi-chao, LIAN Yu-guang, et al. Application of transient electromagnetic method in site selection of coalbed methane extraction well in goaf[J]. Coal Technology, 2021, 40(5): 81-84. (in Chinese) doi: 10.13301/j.cnki.ct.2021.05.022
    [26] 钟世航, 孙宏志, 李术才, 等. 隧道及地下工程施工中岩溶裂隙水及断层、溶洞等隐患的探查、预报[J]. 岩石力学与工程学报, 2012, 31(增1): 3298-3327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1094.htm

    ZHONG Shi-hang, SUN Hong-zhi, LI Shu-cai, et al. Detection and forecasting for hidden danger of karst fissure water and other geological disasters during construction of tunnels and underground projects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3298-3327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1094.htm
    [27] 李术才, 孙怀凤, 李貅, 等. 隧道瞬变电磁超前预报平行磁场响应探测方法[J]. 岩石力学与工程学报, 2014, 33(7): 1309-1318. doi: 10.13722/j.cnki.jrme.2014.07.002

    LI Shu-cai, SUN Huai-feng, LI Xiu, et al. Advanced geology prediction with parallel transient electromagnetic detection in tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1309-1318. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.07.002
    [28] YE Zi-jian, ZHANG Cheng-ping, YE Ying, et al. Application of transient electromagnetic radar in quality evaluation of tunnel composite lining[J]. Construction and Building Materials, 2020, 240: 117958. doi: 10.1016/j.conbuildmat.2019.117958
    [29] 张素磊, 陈淮, 王亚琼. 基于灰色突变理论的隧道衬砌裂缝诊断模型[J]. 交通运输工程学报, 2015, 15(3): 34-40. doi: 10.3969/j.issn.1671-1637.2015.03.006

    ZHANG Su-lei, CHEN Huai, WANG Ya-qiong. Diagnostic model of crack for tunnel lining based on gray and catastrophe theories[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 34-40. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.006
    [30] 王柱, 董长松, 韩常领, 等. 高寒冻融环境下隧道结构服役性能预测模型[J]. 交通运输工程学报, 2016, 16(4): 133-140. doi: 10.3969/j.issn.1671-1637.2016.04.014

    WANG Zhu, DONG Chang-song, HAN Chang-ling, et al. Service performance prediction model of tunnel structure in alpine freezing-thawing environment[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 133-140. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.04.014
    [31] MORADI P, ASADI M J, EBRAHIMZADEH N, et al. Ilam tunnels inspection, maintenance, and rehabilitation: a case study[J]. Tunnelling and Underground Space Technology, 2021, 110: 103814. doi: 10.1016/j.tust.2021.103814
    [32] HSU C S. Theory of index and a generalized Nyquist criterion[J]. International Journal of Non-Linear Mechanics, 1980, 15: 349-54. doi: 10.1016/0020-7462(80)90020-7
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  111
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回