Force and deformation characteristics of subway station foundation pit under severe cold conditions
-
摘要: 以呼和浩特地铁1号线为依托,基于自主研发的冻融循环试验装置,针对基坑土体的温度分布、表面土体冻胀量、地下连续墙受力与变形特性进行室内试验,采用数值仿真分析了不同风速、含水率及温度下基坑的受力与变形特性。研究结果表明:基坑周围土体在从5 ℃到-30 ℃的降温过程中呈现双向冻结特征,靠近地下连续墙一定范围内土体最大冻结深度可达18.2 m(即基坑底面向下1.09 m);基坑土体及地下连续墙的最大变形随着冻融循环次数的增加而增大,并在6个冻融循环周期内趋于稳定,末次冻融周期地表隆起量最大可达首次冻结时的3.85倍;水平冻胀力沿地下连续墙大致呈抛物线型分布,最大冻胀力出现在地下连续墙的中部,在-30 ℃时可达775.8 kPa;风速对基坑土体热交换有显著影响,在风速为0~0.4 m·s-1时风速和基坑水平土压力线性相关,风速为0.4~2.5 m·s-1时土压力波动增长,风速大于2.5 m·s-1后土压力基本稳定;在风速为0~0.4 m·s-1时风速和地表变形线性相关,风速为0.4~2.5 m·s-1时变形阶梯式增长,风速大于2.5 m·s-1后变形基本稳定;当含水率从13.3%提升至33.3%时最大水平土压力增加44.2%;在不同的恒定负温下,环境温度越低最大水平冻胀力的位置越靠近基坑底部,-30 ℃时最大水平冻胀力可达0.95 MPa,地表最大变形可达56.6 mm。Abstract: Based on Hohhot Metro Line 1, a self-developed freeze-thaw cycle test device was used to conduct the laboratory test on the temperature distribution of foundation pit soil, the frost heaving amount of surface soil, and the stress and deformation characteristics of underground continuous wall, and the stress and deformation characteristics of the foundation pit under different wind speeds, water contents, and temperatures were analyzed by the numerical simulation. Analysis results show that the soil around the foundation pit exhibits bidirectional freezing characteristic during the cooling process from 5 ℃ to -30 ℃, and the maximum freezing depth near the underground continuous wall can reach 18.2 m (the bottom of the foundation pit downward 1.09 m). The maximum deformations of foundation pit soil and underground continuous wall increase with the increase in the freeze-thaw cycles and tends to be stable in six freeze-thaw cycles. The maximum surface uplift during the last freeze-thaw cycle can reach 3.85 times that during the first freeze-thaw cycle. The horizontal frost heaving force is approximately parabolic in distribution along the underground continuous wall. The maximum frost heaving force appears in the middle of the underground continuous wall and can reach 775.8 kPa at -30 ℃. Wind speed has a significant effect on the heat exchange of foundation pit soil. The horizontal earth pressure of the foundation pit is linearly correlated with the wind speed of 0-0.4 m·s-1. The earth pressure fluctuates and increases with the wind speed of 0.4-2.5 m·s-1. When the wind speed is greater than 2.5 m·s-1, the earth pressure is basically stable. When the wind speed is 0-0.4 m·s-1, the surface deformation is linearly correlated with the wind speed. When the wind speed is 0.4-2.5 m·s-1, the deformation increases step by step. When the wind speed is greater than 2.5 m·s-1, the deformation is basically stable. When the water content increases from 13.3% to 33.3%, the maximum horizontal earth pressure increases by 44.2%. Under different constant negative temperatures, lower ambient temperature indicates that the maximum horizontal frost heaving force is closer to the bottom of the foundation pit. At -30 ℃, the maximum horizontal frost heaving force can reach 0.95 MPa, and the maximum surface deformation can reach 56.6 mm.
-
表 1 各物理量相似常数
Table 1. Similarity constants of each physical quantity
物理量 弹性、变形模量 均布面力荷载 应力 应变 泊松比 内摩擦角 线位移 相似常数 20 20 20 1 1 1 20 表 2 各层填土性质
Table 2. Natures of each layer of filling
层号 土类 高度/cm 密度/(g·cm-3) 质量/kg 面积/cm2 含水率/% 1 杂填土 6.5 1.7 107.4 1 000 3.0 2 素填土 11.0 1.9 209.2 1 000 5.8 3 黏性土 20.0 2.0 402.4 1 000 20.0 4 细砂 29.5 2.1 605.4 1 000 18.3 5 黏性土 30.0 2.0 588.6 1 000 27.0 6 细砂 15.0 2.1 307.8 1 000 18.3 7 黏性土 18.0 2.0 353.2 1 000 27.0 表 3 水平冻胀力拟合方程
Table 3. Fitting equations of horizontal frost heaving force
温度/℃ y=Ax2+Bx+C A B C $-\frac{B}{2 A} $ -10 -0.002 0.177 0.201 53.832 -15 -0.003 0.339 -0.288 52.423 -20 -0.005 0.529 -0.271 51.755 -25 -0.008 0.806 -1.114 50.888 -30 -0.010 1.063 -1.824 50.935 表 4 降温结束时模拟与试验的变形
Table 4. Deformations of simulation and test at end of cooling
mm 位置 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 试验 1.49 1.20 2.06 2.66 0.13 0.09 0.05 0.03 0.04 0.12 模拟 1.84 1.96 2.14 2.39 0.03 0.06 0.02 0.03 0.07 0.22 -
[1] LEROUEIL S, TARDIF J, ROY M, et al. Effects of frost on the mechanical behavior of Champlain Sea clays[J]. Canadian Geotechnical Journal, 2011, 28(5): 690-697. [2] 李金平, 张娟, 陈建兵, 等. 高寒冻土区路基变形演化规律与破坏特征[J]. 交通运输工程学报, 2016, 16(4): 78-87. doi: 10.3969/j.issn.1671-1637.2016.04.008LI Jin-ping, ZHANG Juan, CHEN Jian-bing, et al. Evolution laws and failure characteristics of subgrade deformation in alpine permafrost region[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 78-87. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.04.008 [3] 房建宏, 李东庆, 周家作, 等. 季节性冻土路基防冻胀技术研究[J]. 中国公路学报, 2013, 26(6): 9-14. doi: 10.3969/j.issn.1001-7372.2013.06.002FANG Jian-hong, LI Dong-qing, ZHOU Jia-zuo, et al. Technical study on anti-frost heaving in seasonally frozen soil subgrade[J]. China Journal of Highway and Transport, 2013, 26(6): 9-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.06.002 [4] 杜耀辉, 杨晓华, 晏长根. 季节性寒区隧道温度场数值分析[J]. 冰川冻土, 2017, 39(2): 366-374. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201702017.htmDU Yao-hui, YANG Xiao-hua, YAN Chang-gen. Numerical analysis of tunnel temperature field in seasonal frozen regions[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 366-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201702017.htm [5] 陈之祥, 李顺群, 夏锦红, 等. 冻土导热系数测试和计算现状分析[J]. 建筑科学与工程学报, 2019, 36(2): 101-115. doi: 10.3969/j.issn.1673-2049.2019.02.013CHEN Zhi-xiang, LI Shun-qun, XIA Jin-hong, et al. Test and calculation situation analysis of thermal conductivity of frozen soil[J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 101-115. (in Chinese) doi: 10.3969/j.issn.1673-2049.2019.02.013 [6] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798. doi: 10.13278/j.cnki.jjuese.20160355SUN Chao, SHAO Yan-hong, WANG Han-dong. Research progress and thinking on horizontal frost heaving force and retaining structure[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 784-798. (in Chinese) doi: 10.13278/j.cnki.jjuese.20160355 [7] 隋铁龄, 李大倬, 那文杰, 等. 季节冻土区挡土墙水平冻胀力的设计取值方法[J]. 水利学报, 1992, 1(1): 67-72. doi: 10.3321/j.issn:0559-9350.1992.01.011SUI Tie-ling, LI Da-zhuo, NA Wen-jie, et al. Design method of horizontal frost heaving force in seasonal frozen retaining wall[J]. Journal of Hydraulic Engineering, 1992, 1(1): 67-72. (in Chinese) doi: 10.3321/j.issn:0559-9350.1992.01.011 [8] 汪恩良, 姜海强, 韩红卫, 等. 冻融模型相似性分析及试验验证[J]. 岩土力学, 2018, 39(增1): 333-340. doi: 10.16285/j.rsm.2018.0640WANG En-liang, JIANG Hai-qiang, HAN Hong-wei, et al. Similarity analysis and experiment verification of freeze-thaw model[J]. Rock and Soil Mechanics, 2018, 39(S1): 333-340. (in Chinese) doi: 10.16285/j.rsm.2018.0640 [9] 王建州, 刘书幸, 周国庆, 等. 深季节冻土地区基坑工程水平冻胀力试验研究[J]. 中国矿业大学学报, 2018, 47(4): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htmWANG Jian-zhou, LIU Shu-xing, ZHOU Guo-qing, et al. Model experiment on frost-heave force of foundation pit at deep seasonal frozen regions[J]. Journal of China University of Mining and Technology, 2018, 47(4): 815-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm [10] 宋春霞, 齐吉琳, 刘奉银. 冻融作用对兰州黄土力学性质的影响[J]. 岩土力学, 2008, 29(4): 1077-1080, 1086. doi: 10.3969/j.issn.1000-7598.2008.04.042SONG Chun-xia, QI Ji-lin, LIU Feng-yin. Influence of freeze-thaw on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2008, 29(4): 1077-1080, 1086. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.04.042 [11] 晏长根, 王婷, 贾海梁, 等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报, 2019, 38(6): 1252-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906016.htmYAN Chang-gen, WANG Ting, JIA Hai-liang, et al. Influence of the unfrozen water content on the shear strength of unsaturated silt during freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1252-1260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906016.htm [12] 叶万军, 杨更社, 彭建兵, 等. 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 199-205. doi: 10.3969/j.issn.1000-6915.2012.01.023YE Wan-jun, YANG Geng-she, PENG Jian-bing, et al. Test research on mechanism of freezing and thawing cycle resulting in lofss slope spallng hazards in Luochuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 199-205. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.01.023 [13] 苏谦, 唐第甲, 刘深. 青藏斜坡黏土冻融循环物理力学性质试验[J]. 岩石力学与工程学报, 2008, 27(增1): 2990-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1062.htmSU Qian, TANG Di-jia, LIU Shen. Test on physico- mechanical properties of Qinghai-Tibet Slope clay under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2990-2994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1062.htm [14] KONRAD J M. Physical processes during freeze-thaw cycles in clayey silts[J]. Cold Regions Science and Technology, 1989, 16(3): 291-303. doi: 10.1016/0165-232X(89)90029-3 [15] OTHMAN M A, BENSON C H. Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay[J]. Revue Canadienne De Géotechnique, 1993, 30: 236-246. doi: 10.1139/t93-020 [16] KIM W, DANIEL D E. Effects of freezing on hydraulic conductivity of compacted clay[J]. Journal of Geotechnical Engineering, 1992, 118(7): 1083-1097. doi: 10.1061/(ASCE)0733-9410(1992)118:7(1083) [17] VIKLANDER P. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Revue Canadienne De Géotechnique, 1998, 35: 471-477. doi: 10.1139/t98-015 [18] CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1): 73-92. [19] MILLER R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393: 1-11. [20] KONRAD J M. A mechanistic theory of ice lens formation in fine-grained soils[J]. Canadian Geotechnical Journal, 1980, 17(4): 473-486. [21] KONRAD J M, MORGENSTERN N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491. [22] EVERETT D H. Thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society, 1961, 57(5): 1541-1551. [23] ZHU Yuan-lin, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology, 1984, 9(1): 3-15. [24] 何平, 程国栋, 朱元林. 冻土粘弹塑损伤耦合本构理论[J]. 中国科学: 地球科学, 1999, 1(增1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1999S1005.htmHE Ping, CHENG Guo-dong, ZHU Yuan-lin. Coupling constitutive theory of viscoelastic plastic damage of frozen soil[J]. Science in China, 1999, 1(S1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1999S1005.htm [25] 李鑫, 刘恩龙, 侯丰. 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htmLI Xin, LIU En-long, HOU Feng. A creep constitutive model for frozen soils considering the influence of temperature[J]. Rock and Soil Mechanics, 2019, 40(2): 624-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm [26] 毛雪松, 李宁, 王秉纲, 等. 多年冻土路基水-热-力耦合理论模型及数值模拟[J]. 长安大学学报(自然科学版), 2006, 26(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604004.htmMAO Xue-song, LI Ning, WANG Bing-gang, et al. Coupling model and numerical simulation of moisture-heat-stress fields in permafrost embankment[J]. Journal of Chang'an University (Natural Science Edition), 2006, 26(4): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604004.htm [27] 王铁行, 胡长顺. 多年冻土地区路基温度场和水分迁移场耦合问题研究[J]. 土木工程学报, 2003, 36(12): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200312016.htmWANG Tie-hang, HU Chang-shun. Study on the problem of coupled temperature field andmoisture migration field of subgrade in permafrost region[J]. China Civil Engineering Journal, 2003, 36(12): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200312016.htm [28] LAI Yuan-ming, PEI Wan-sheng, ZHANG Ming-yi, et al. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805-819. [29] ZHAO Xin, YANG Xiao-hua, ZHANG Hong-wei, et al. An analytical solution for frost heave force by the multifactor of coupled heat and moisture transfer in cold-region tunnels[J]. Cold Regions Science and Technology, 2020, 175(2020): 1-10. [30] 赵鑫, 张洪伟, 杨晓华, 等. 寒区隧道温度简谐波传热特征与影响因素的敏感性[J]. 交通运输工程学报, 2020, 20(6): 148-160. doi: 10.19818/j.cnki.1671-1637.2020.06.013ZHAO Xin, ZHANG Hong-wei, YANG Xiao-hua, et al. Heat transfer characteristics for temperature of simple harmonic quantity in the cold-region tunnel and sensitivity of influencing factors[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 148-160. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.013 [31] CHAO G, LU Z. Frost heaving of foundation pit for seasonal permafrost areas[J]. Magazine of Civil Engineering, 2019, 86(2): 61-71. [32] 李丽霞. 呼和浩特市区近27年月平均气温变化特征分析[J]. 内蒙古科技与经济, 2019, 22(11): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201922017.htmLI Li-xia. Analysis on variation characteristics of monthly mean temperature in Hohhot in recent 27 years[J]. Inner Mongolia Science Technologyand Economy, 2019, 22(11): 41-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201922017.htm [33] 张文强, 王羿, 牛永红. 冻土模型试验试样冻结时间计算分析[J]. 冰川冻土, 2019, 41(2): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201902015.htmZHANG Wen-qiang, WANG Yi, NIU Yong-hong. Calculation and analysis of freezing time of frozen soil model test specime[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 384-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201902015.htm [34] TONG Chang-jiang, SHEN Zong-yan. Horizontal frost heave thrust acting on buttress constructions[J]. Engineering Geology, 1981, 18(1991): 259-268. [35] ABZHALIMOV R S. Laboratory investigations of frost heaving[J]. Soil Mechanics and Foundation Engineering, 1982, 19(5): 434-436. [36] 白青波, 李旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(增2): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2027.htmBAI Qing-bo, LI Xu, TIAN Ya-hu, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 131-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2027.htm