留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

严寒条件下地铁车站基坑受力与变形特性

杨晓华 蔡世春 何少华 邵莹 晏长根

杨晓华, 蔡世春, 何少华, 邵莹, 晏长根. 严寒条件下地铁车站基坑受力与变形特性[J]. 交通运输工程学报, 2023, 23(4): 233-247. doi: 10.19818/j.cnki.1671-1637.2023.04.017
引用本文: 杨晓华, 蔡世春, 何少华, 邵莹, 晏长根. 严寒条件下地铁车站基坑受力与变形特性[J]. 交通运输工程学报, 2023, 23(4): 233-247. doi: 10.19818/j.cnki.1671-1637.2023.04.017
YANG Xiao-hua, CAI Shi-chun, HE Shao-hua, SHAO Ying, YAN Chang-gen. Force and deformation characteristics of subway station foundation pit under severe cold conditions[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 233-247. doi: 10.19818/j.cnki.1671-1637.2023.04.017
Citation: YANG Xiao-hua, CAI Shi-chun, HE Shao-hua, SHAO Ying, YAN Chang-gen. Force and deformation characteristics of subway station foundation pit under severe cold conditions[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 233-247. doi: 10.19818/j.cnki.1671-1637.2023.04.017

严寒条件下地铁车站基坑受力与变形特性

doi: 10.19818/j.cnki.1671-1637.2023.04.017
基金项目: 

国家自然科学基金项目 42077265

详细信息
    作者简介:

    杨晓华(1961-),男,河北唐山人,长安大学教授,工学博士,从事岩土与隧道工程研究

  • 中图分类号: U231.4

Force and deformation characteristics of subway station foundation pit under severe cold conditions

Funds: 

National Natural Science Foundation of China 42077265

More Information
  • 摘要: 以呼和浩特地铁1号线为依托,基于自主研发的冻融循环试验装置,针对基坑土体的温度分布、表面土体冻胀量、地下连续墙受力与变形特性进行室内试验,采用数值仿真分析了不同风速、含水率及温度下基坑的受力与变形特性。研究结果表明:基坑周围土体在从5 ℃到-30 ℃的降温过程中呈现双向冻结特征,靠近地下连续墙一定范围内土体最大冻结深度可达18.2 m(即基坑底面向下1.09 m);基坑土体及地下连续墙的最大变形随着冻融循环次数的增加而增大,并在6个冻融循环周期内趋于稳定,末次冻融周期地表隆起量最大可达首次冻结时的3.85倍;水平冻胀力沿地下连续墙大致呈抛物线型分布,最大冻胀力出现在地下连续墙的中部,在-30 ℃时可达775.8 kPa;风速对基坑土体热交换有显著影响,在风速为0~0.4 m·s-1时风速和基坑水平土压力线性相关,风速为0.4~2.5 m·s-1时土压力波动增长,风速大于2.5 m·s-1后土压力基本稳定;在风速为0~0.4 m·s-1时风速和地表变形线性相关,风速为0.4~2.5 m·s-1时变形阶梯式增长,风速大于2.5 m·s-1后变形基本稳定;当含水率从13.3%提升至33.3%时最大水平土压力增加44.2%;在不同的恒定负温下,环境温度越低最大水平冻胀力的位置越靠近基坑底部,-30 ℃时最大水平冻胀力可达0.95 MPa,地表最大变形可达56.6 mm。

     

  • 图  1  呼和浩特地铁1号线

    Figure  1.  Hohhot Metro Line 1

    图  2  模型箱剖面(单位:mm)

    Figure  2.  Profile of model box (unit: mm)

    图  3  填筑完成情况

    Figure  3.  Completion of filling

    图  4  温度分布

    Figure  4.  Distributions of temperature

    图  5  测点布置

    Figure  5.  Arrangement of measuring points

    图  6  基坑地表变形

    Figure  6.  Deformations of surface outside foundation pit

    图  7  地下连续墙位置变形

    Figure  7.  Deformations of underground continuous wall

    图  8  基坑底部变形情况

    Figure  8.  Deformations of bottom of foundation pit

    图  9  各测点应力随温度的变化情况

    Figure  9.  Stress change of each measuring point with temperature

    图  10  水平冻胀力拟合曲线

    Figure  10.  Fitting curves of horizontal frost heaving force

    图  11  几何模型(单位:m)

    Figure  11.  Geometric model (unit: m)

    图  12  基坑降温的模拟

    Figure  12.  Simulation of foundation pit cooling

    图  13  试验与模拟结果对比

    Figure  13.  Comparison between test and simulation results

    图  14  降温结束时温度分布

    Figure  14.  Temperature distributions at end of cooling

    图  15  风对基坑受力与变形的影响

    Figure  15.  Effects of wind on stress and deformation of foundation pit

    图  16  不同风速下水平土压力的变化

    Figure  16.  Variations in horizontal earth pressure under different wind speeds

    图  17  地表变形随风速的变化

    Figure  17.  Variations in surface deformation with wind speed

    图  18  含水率对基坑冻胀的影响

    Figure  18.  Influences of water content on frost heave of foundation pit

    图  19  基坑变形情况

    Figure  19.  Deformations of foundation pit

    图  20  温度对基坑冻胀变形的影响

    Figure  20.  Effects of temperature on frost heaving deformation of foundation pit

    图  21  水平冻胀力随深度变化情况

    Figure  21.  Variations in horizontal frost heaving force with depth

    图  22  地表变形随温度的变化

    Figure  22.  Variations in surface deformation with temperature

    表  1  各物理量相似常数

    Table  1.   Similarity constants of each physical quantity

    物理量 弹性、变形模量 均布面力荷载 应力 应变 泊松比 内摩擦角 线位移
    相似常数 20 20 20 1 1 1 20
    下载: 导出CSV

    表  2  各层填土性质

    Table  2.   Natures of each layer of filling

    层号 土类 高度/cm 密度/(g·cm-3) 质量/kg 面积/cm2 含水率/%
    1 杂填土 6.5 1.7 107.4 1 000 3.0
    2 素填土 11.0 1.9 209.2 1 000 5.8
    3 黏性土 20.0 2.0 402.4 1 000 20.0
    4 细砂 29.5 2.1 605.4 1 000 18.3
    5 黏性土 30.0 2.0 588.6 1 000 27.0
    6 细砂 15.0 2.1 307.8 1 000 18.3
    7 黏性土 18.0 2.0 353.2 1 000 27.0
    下载: 导出CSV

    表  3  水平冻胀力拟合方程

    Table  3.   Fitting equations of horizontal frost heaving force

    温度/℃ y=Ax2+Bx+C
    A B C $-\frac{B}{2 A} $
    -10 -0.002 0.177 0.201 53.832
    -15 -0.003 0.339 -0.288 52.423
    -20 -0.005 0.529 -0.271 51.755
    -25 -0.008 0.806 -1.114 50.888
    -30 -0.010 1.063 -1.824 50.935
    下载: 导出CSV

    表  4  降温结束时模拟与试验的变形

    Table  4.   Deformations of simulation and test at end of cooling  mm

    位置 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
    试验 1.49 1.20 2.06 2.66 0.13 0.09 0.05 0.03 0.04 0.12
    模拟 1.84 1.96 2.14 2.39 0.03 0.06 0.02 0.03 0.07 0.22
    下载: 导出CSV
  • [1] LEROUEIL S, TARDIF J, ROY M, et al. Effects of frost on the mechanical behavior of Champlain Sea clays[J]. Canadian Geotechnical Journal, 2011, 28(5): 690-697.
    [2] 李金平, 张娟, 陈建兵, 等. 高寒冻土区路基变形演化规律与破坏特征[J]. 交通运输工程学报, 2016, 16(4): 78-87. doi: 10.3969/j.issn.1671-1637.2016.04.008

    LI Jin-ping, ZHANG Juan, CHEN Jian-bing, et al. Evolution laws and failure characteristics of subgrade deformation in alpine permafrost region[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 78-87. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.04.008
    [3] 房建宏, 李东庆, 周家作, 等. 季节性冻土路基防冻胀技术研究[J]. 中国公路学报, 2013, 26(6): 9-14. doi: 10.3969/j.issn.1001-7372.2013.06.002

    FANG Jian-hong, LI Dong-qing, ZHOU Jia-zuo, et al. Technical study on anti-frost heaving in seasonally frozen soil subgrade[J]. China Journal of Highway and Transport, 2013, 26(6): 9-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.06.002
    [4] 杜耀辉, 杨晓华, 晏长根. 季节性寒区隧道温度场数值分析[J]. 冰川冻土, 2017, 39(2): 366-374. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201702017.htm

    DU Yao-hui, YANG Xiao-hua, YAN Chang-gen. Numerical analysis of tunnel temperature field in seasonal frozen regions[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 366-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201702017.htm
    [5] 陈之祥, 李顺群, 夏锦红, 等. 冻土导热系数测试和计算现状分析[J]. 建筑科学与工程学报, 2019, 36(2): 101-115. doi: 10.3969/j.issn.1673-2049.2019.02.013

    CHEN Zhi-xiang, LI Shun-qun, XIA Jin-hong, et al. Test and calculation situation analysis of thermal conductivity of frozen soil[J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 101-115. (in Chinese) doi: 10.3969/j.issn.1673-2049.2019.02.013
    [6] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798. doi: 10.13278/j.cnki.jjuese.20160355

    SUN Chao, SHAO Yan-hong, WANG Han-dong. Research progress and thinking on horizontal frost heaving force and retaining structure[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 784-798. (in Chinese) doi: 10.13278/j.cnki.jjuese.20160355
    [7] 隋铁龄, 李大倬, 那文杰, 等. 季节冻土区挡土墙水平冻胀力的设计取值方法[J]. 水利学报, 1992, 1(1): 67-72. doi: 10.3321/j.issn:0559-9350.1992.01.011

    SUI Tie-ling, LI Da-zhuo, NA Wen-jie, et al. Design method of horizontal frost heaving force in seasonal frozen retaining wall[J]. Journal of Hydraulic Engineering, 1992, 1(1): 67-72. (in Chinese) doi: 10.3321/j.issn:0559-9350.1992.01.011
    [8] 汪恩良, 姜海强, 韩红卫, 等. 冻融模型相似性分析及试验验证[J]. 岩土力学, 2018, 39(增1): 333-340. doi: 10.16285/j.rsm.2018.0640

    WANG En-liang, JIANG Hai-qiang, HAN Hong-wei, et al. Similarity analysis and experiment verification of freeze-thaw model[J]. Rock and Soil Mechanics, 2018, 39(S1): 333-340. (in Chinese) doi: 10.16285/j.rsm.2018.0640
    [9] 王建州, 刘书幸, 周国庆, 等. 深季节冻土地区基坑工程水平冻胀力试验研究[J]. 中国矿业大学学报, 2018, 47(4): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm

    WANG Jian-zhou, LIU Shu-xing, ZHOU Guo-qing, et al. Model experiment on frost-heave force of foundation pit at deep seasonal frozen regions[J]. Journal of China University of Mining and Technology, 2018, 47(4): 815-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804015.htm
    [10] 宋春霞, 齐吉琳, 刘奉银. 冻融作用对兰州黄土力学性质的影响[J]. 岩土力学, 2008, 29(4): 1077-1080, 1086. doi: 10.3969/j.issn.1000-7598.2008.04.042

    SONG Chun-xia, QI Ji-lin, LIU Feng-yin. Influence of freeze-thaw on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2008, 29(4): 1077-1080, 1086. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.04.042
    [11] 晏长根, 王婷, 贾海梁, 等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报, 2019, 38(6): 1252-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906016.htm

    YAN Chang-gen, WANG Ting, JIA Hai-liang, et al. Influence of the unfrozen water content on the shear strength of unsaturated silt during freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1252-1260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906016.htm
    [12] 叶万军, 杨更社, 彭建兵, 等. 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 199-205. doi: 10.3969/j.issn.1000-6915.2012.01.023

    YE Wan-jun, YANG Geng-she, PENG Jian-bing, et al. Test research on mechanism of freezing and thawing cycle resulting in lofss slope spallng hazards in Luochuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 199-205. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.01.023
    [13] 苏谦, 唐第甲, 刘深. 青藏斜坡黏土冻融循环物理力学性质试验[J]. 岩石力学与工程学报, 2008, 27(增1): 2990-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1062.htm

    SU Qian, TANG Di-jia, LIU Shen. Test on physico- mechanical properties of Qinghai-Tibet Slope clay under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2990-2994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1062.htm
    [14] KONRAD J M. Physical processes during freeze-thaw cycles in clayey silts[J]. Cold Regions Science and Technology, 1989, 16(3): 291-303. doi: 10.1016/0165-232X(89)90029-3
    [15] OTHMAN M A, BENSON C H. Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay[J]. Revue Canadienne De Géotechnique, 1993, 30: 236-246. doi: 10.1139/t93-020
    [16] KIM W, DANIEL D E. Effects of freezing on hydraulic conductivity of compacted clay[J]. Journal of Geotechnical Engineering, 1992, 118(7): 1083-1097. doi: 10.1061/(ASCE)0733-9410(1992)118:7(1083)
    [17] VIKLANDER P. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Revue Canadienne De Géotechnique, 1998, 35: 471-477. doi: 10.1139/t98-015
    [18] CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1): 73-92.
    [19] MILLER R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393: 1-11.
    [20] KONRAD J M. A mechanistic theory of ice lens formation in fine-grained soils[J]. Canadian Geotechnical Journal, 1980, 17(4): 473-486.
    [21] KONRAD J M, MORGENSTERN N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491.
    [22] EVERETT D H. Thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society, 1961, 57(5): 1541-1551.
    [23] ZHU Yuan-lin, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology, 1984, 9(1): 3-15.
    [24] 何平, 程国栋, 朱元林. 冻土粘弹塑损伤耦合本构理论[J]. 中国科学: 地球科学, 1999, 1(增1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1999S1005.htm

    HE Ping, CHENG Guo-dong, ZHU Yuan-lin. Coupling constitutive theory of viscoelastic plastic damage of frozen soil[J]. Science in China, 1999, 1(S1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1999S1005.htm
    [25] 李鑫, 刘恩龙, 侯丰. 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm

    LI Xin, LIU En-long, HOU Feng. A creep constitutive model for frozen soils considering the influence of temperature[J]. Rock and Soil Mechanics, 2019, 40(2): 624-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm
    [26] 毛雪松, 李宁, 王秉纲, 等. 多年冻土路基水-热-力耦合理论模型及数值模拟[J]. 长安大学学报(自然科学版), 2006, 26(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604004.htm

    MAO Xue-song, LI Ning, WANG Bing-gang, et al. Coupling model and numerical simulation of moisture-heat-stress fields in permafrost embankment[J]. Journal of Chang'an University (Natural Science Edition), 2006, 26(4): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604004.htm
    [27] 王铁行, 胡长顺. 多年冻土地区路基温度场和水分迁移场耦合问题研究[J]. 土木工程学报, 2003, 36(12): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200312016.htm

    WANG Tie-hang, HU Chang-shun. Study on the problem of coupled temperature field andmoisture migration field of subgrade in permafrost region[J]. China Civil Engineering Journal, 2003, 36(12): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200312016.htm
    [28] LAI Yuan-ming, PEI Wan-sheng, ZHANG Ming-yi, et al. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805-819.
    [29] ZHAO Xin, YANG Xiao-hua, ZHANG Hong-wei, et al. An analytical solution for frost heave force by the multifactor of coupled heat and moisture transfer in cold-region tunnels[J]. Cold Regions Science and Technology, 2020, 175(2020): 1-10.
    [30] 赵鑫, 张洪伟, 杨晓华, 等. 寒区隧道温度简谐波传热特征与影响因素的敏感性[J]. 交通运输工程学报, 2020, 20(6): 148-160. doi: 10.19818/j.cnki.1671-1637.2020.06.013

    ZHAO Xin, ZHANG Hong-wei, YANG Xiao-hua, et al. Heat transfer characteristics for temperature of simple harmonic quantity in the cold-region tunnel and sensitivity of influencing factors[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 148-160. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.013
    [31] CHAO G, LU Z. Frost heaving of foundation pit for seasonal permafrost areas[J]. Magazine of Civil Engineering, 2019, 86(2): 61-71.
    [32] 李丽霞. 呼和浩特市区近27年月平均气温变化特征分析[J]. 内蒙古科技与经济, 2019, 22(11): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201922017.htm

    LI Li-xia. Analysis on variation characteristics of monthly mean temperature in Hohhot in recent 27 years[J]. Inner Mongolia Science Technologyand Economy, 2019, 22(11): 41-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201922017.htm
    [33] 张文强, 王羿, 牛永红. 冻土模型试验试样冻结时间计算分析[J]. 冰川冻土, 2019, 41(2): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201902015.htm

    ZHANG Wen-qiang, WANG Yi, NIU Yong-hong. Calculation and analysis of freezing time of frozen soil model test specime[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 384-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201902015.htm
    [34] TONG Chang-jiang, SHEN Zong-yan. Horizontal frost heave thrust acting on buttress constructions[J]. Engineering Geology, 1981, 18(1991): 259-268.
    [35] ABZHALIMOV R S. Laboratory investigations of frost heaving[J]. Soil Mechanics and Foundation Engineering, 1982, 19(5): 434-436.
    [36] 白青波, 李旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(增2): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2027.htm

    BAI Qing-bo, LI Xu, TIAN Ya-hu, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 131-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2027.htm
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  68
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-25
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回