Design and application of modular step-by-step scale model test for earth pressure balance shield construction
Article Text (Baidu Translation)
-
摘要: 为提高对盾构施工相关问题试验研究的针对性,提出了土压平衡盾构施工模块化分步缩尺模型试验方法,并设计了模型试验相关装置;为避免多个关键影响因素相互影响,将盾构隧道施工过程中开挖掘进、管片拼装、同步注浆等关键操作环节分开依次进行模拟;为降低刀盘开口率试验研究相关成本,研制了几何相似比为1∶10且刀盘开口率可调的模型盾构机;为确保模型盾构隧道的纵、横向刚度相似性,设计了几何相似比为1∶10且纵、横向刚度可分别按需设置的模型盾构隧道,其管片环采用修正匀质圆环模型,管片环之间采用垫有压缩弹簧的螺栓连接;为方便试验并节省成本,模型盾构隧道采用外部拼装后再放入钢套筒内,以避免在狭小空间内进行管片拼装,且不加工管片拼装机;为实现注浆压力与注浆量的精准控制,设计了适用于室内模型试验的恒压同步注浆装置;利用模型盾构机开展了掘进施工过程中渣土输出控制对地表沉降影响的试验研究。分析结果表明:单位掘进距离的渣土输出量直接关系到盾构掘进过程中的超挖控制,从而影响地表沉降,当出土率小于1时,出土率变化对地表沉降影响较小,当出土率大于1时,出土率增大将显著加大地表沉降。为了最大程度地发挥整个模型试验的科研价值,在盾构隧道完成施工后,建议继续开展盾构隧道响应研究的相关模型试验。Abstract: To improve the pertinence of experimental research on shield construction-related problems, a modular step-by-step scale model test method for the earth pressure balance shield construction was proposed, and the model test-related device was designed. To avoid the mutual influence of multiple key influencing factors, the key operation links for the shield construction such as the excavation, segment assembly, and synchronous grouting were simulected in a separate and sequential manner. To reduce the cost of experimental research on the cutterhead opening rate, a model shield machine with a geometric similarity ratio of 1∶10 and an adjustable cutterhead opening rate was developed. To ensure the similarity of the longitudinal and transverse stiffnesses of the model shield tunnel, a model shield tunnel with a geometric similarity ratio of 1∶10 and the longitudinal and transverse stiffnesses set on demand respectively was designed. The segment ring adopted the modified homogeneous ring model, and the segment rings were connected by compression spring bolts. To facilitate the test and save the test cost, the model shield tunnel was assembled externally and then put into the steel sleeve, so as to avoid the segment assembly in a narrow space, and the model shield machine did not need to process the segment assembly machine. To realize the precise control of grouting pressure and grouting amount, a constant pressure synchronous grouting device suitable for the indoor model test was designed. The experimental study on the influence of slag soil output control on the surface settlement during the tunneling construction was carried out by using the model shield machine. Analysis results show that the slag soil output per unit tunneling distance is directly related to the over-excavation control in the process of shield tunneling, thus affecting the surface settlement. When the unearthed rate is less than 1, the change in the unearthed rate has little effect on the surface settlement. When the unearthed rate is greater than 1, the increase in the unearthed rate will significantly increase the surface settlement. To maximize the scientific research value of the whole model test, it is suggested to continue to carry out the relevant model test of shield tunnel response research after the completion of shield tunnel construction.
-
Key words:
- tunnel engineering /
- shield machine /
- shield tunnel /
- shield excavation /
- earth pressure balance /
- model test
-
[1] 周顺华, 何超, 肖军华. 环间错台效应下基坑开挖引起临近地铁盾构隧道变形的能量计算法[J]. 中国铁道科学, 2016, 37(3): 53-60. doi: 10.3969/j.issn.1001-4632.2016.03.008ZHOU Shun-hua, HE Chao, XIAO Jun-hua. Energy method for calculating deformation of adjacent shield tunnels due to foundation pit excavation considering step between rings[J]. China Railway Science, 2016, 37(3): 53-60. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.008 [2] 刘新根, 陈莹莹, 刘学增. 激光扫描盾构隧道断面变形快速检测[J]. 交通运输工程学报, 2021, 21(2): 107-116. doi: 10.19818/j.cnki.1671-1637.2021.02.009LIU Xin-gen, CHEN Ying-ying, LIU Xue-zeng. Laser scanning-based rapid detection of deformation of shield tunnel section[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 107-116. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.02.009 [3] 谷拴成, 孙冠临, 苏培莉. 外圆内椭管片结构内力计算模型[J]. 交通运输工程学报, 2021, 21(4): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.04.006GU Shuan-cheng, SUN Guan-lin, SU Pei-li. Computational model of outer-circle and inner-ellipse shield tunnel lining structure[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 94-105. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.006 [4] 江英超, 何川, 胡雄玉, 等. 砂土地层盾构隧道施工对地层扰动的室内掘进试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2550-2559. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312023.htmJIANG Ying-chao, HE Chuan, HU Xiong-yu, et al. Laboratory test study of soil disturbance caused by shield tunnelling in sandy strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2550-2559. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312023.htm [5] 何川, 汪洋, 方勇, 等. 土压平衡式盾构掘进过程的相似模型试验[J]. 土木工程学报, 2012, 45(2): 162-169. doi: 10.15951/j.tmgcxb.2012.02.008HE Chuan, WANG Yang, FANG Yong, et al. Similarity model test of earth-pressure-balanced shield tunneling process[J]. China Civil Engineering Journal, 2012, 45(2): 162-169. (in Chinese) doi: 10.15951/j.tmgcxb.2012.02.008 [6] 胡雄玉, 何川, 方勇, 等. φ800 mm土压平衡式模型盾构试验系统的研制[J]. 现代隧道技术, 2014, 51(4): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201404021.htmHU Xiong-yu, HE Chuan, FANG Yong, et al. Development of the φ800 mm EPB shield model testing system[J]. Modern Tunnelling Technology, 2014, 51(4): 133-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201404021.htm [7] ABDUL Q M, 雷春明, 田雨, 等. 盾构下穿对既有隧道影响的模型试验研究[J]. 地下空间工程学报, 2020, 16(增2): 540-545. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2020S2004.htmABDUL Q M, LEI Chun-ming, TIAN Yu, et al. Model test study on influence of the undercrossing shield tunnels on the existing tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2): 540-545. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2020S2004.htm [8] 朱合华, 徐前卫, 郑七振, 等. 软土地层土压平衡盾构施工参数的模型试验研究[J]. 土木工程学报, 2007, 40(9): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200709015.htmZHU He-hua, XU Qian-wei, ZHENG Qi-zhen, et al. Experimental study on the working parameters of EPB shield tunneling in soft ground[J]. China Civil Engineering Journal, 2007, 40(9): 87-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200709015.htm [9] 徐前卫, 朱合华, 廖少明, 等. 软土地层土压平衡盾构法施工的模型试验研究[J]. 岩土工程学报, 2007, 29(12): 1849-1857. doi: 10.3321/j.issn:1000-4548.2007.12.017XU Qian-wei, ZHU He-hua, LIAO Shao-ming, et al. Experimental study on EPB shield tunnel construction in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1849-1857. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.12.017 [10] 金大龙, 袁大军, 李兴高. 土盾构土舱压力变化规律测试试验与理论分析[J]. 岩石力学与工程学报, 2016, 35(增1): 2960-2967. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1042.htmJIN Da-long, YUAN Da-jun, LI Xing-gao. Test and theoretical analysis of change laws of earth chamber pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2960-2967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1042.htm [11] 李守巨, 屈福政, 曹丽娟, 等. 土压平衡盾构机密封舱压力控制实验研究[J]. 煤炭学报, 2011, 36(6): 934-937. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106010.htmLI Shou-ju, QU Fu-zheng, CAO Li-juan, et al. Experimental investigation about chamber pressure control of earth pressure balance shield[J]. Journal of China Coal Society, 2011, 36(6): 934-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106010.htm [12] 李守巨, 陈禹臻, 曹丽娟, 等. 土压平衡盾构机密封舱压力控制机理模型研究[J]. 岩土工程学报, 2011, 33(增1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1007.htmLI Shou-ju, CHEN Yu-zhen, CAO Li-juan, et al. Mechanism model of pressure control of headchamber in earth-pressure-balanced shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 41-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1007.htm [13] 李守巨, 于贺, 曹丽娟. 盾构机土仓压力平衡系统智能建模及其实验[J]. 煤炭学报, 2012, 37(增2): 325-329. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2012S2012.htmLI Shou-ju, YU He, CAO Li-juan. Intelligent modeling pressure balance system in soil chamber in shield tunneling and its experimental investigation[J]. Journal of China Coal Society, 2012, 37(S2): 325-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2012S2012.htm [14] 王海涛, 金慧, 涂兵雄, 等. 砂土地层地铁盾构隧道施工对地层沉降影响的模型试验研究[J]. 中国铁道科学, 2017, 38(6): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201706011.htmWANG Hai-tao, JIN Hui, TU Bing-xiong, et al. Model test study on influence of ground settlement caused by shield tunnel construction in sand stratum[J]. China Railway Science, 2017, 38(6): 70-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201706011.htm [15] 魏纲, 王辰, 丁智, 等. 邻近管线的类矩形盾构隧道施工室内模型试验研究[J]. 岩石力学与工程学报, 2019, 38(增2): 3905-3912. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2066.htmWEI Gang, WANG Chen, DING Zhi, et al. Study on indoor model test of similar quasi-rectangular shield tunnel adjacent to pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3905-3912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2066.htm [16] 魏纲, 王辰, 蔡诗淇, 等. 类矩形盾构施工对地下管线影响的模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1489-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908016.htmWEI Gang, WANG Chen, CAI Shi-qi, et al. Model tests on influences of quasi-rectangular shield construction on underground pipelines[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1489-1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908016.htm [17] 房倩, 杜建明, 王中举, 等. 盾构施工影响下砂土地层变形规律模型试验研究[J]. 中国公路学报, 2021, 34(5): 135-143, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105013.htmFANG Qian, DU Jian-ming, WANG Zhong-ju, et al. Model experimental study on stratum deformation of shield tunnelling in sand[J]. China Journal of Highway and Transport, 2021, 34(5): 135-143, 214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105013.htm [18] 黄大维, 周顺华, 冯青松, 等. 地表超载对软、硬地层中既有盾构隧道影响的试验研究[J]. 岩土工程学报, 2019, 41(5): 942-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905022.htmHUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Experimental study on influences of surface surcharge on existing shield tunnels buried in soft and hard soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 942-949. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905022.htm [19] 黄大维, 周顺华, 冯青松, 等. 地表超载作用下软土地区既有盾构隧道与地层的相互作用分析[J]. 铁道学报, 2018, 40(10): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201810014.htmHUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Analysis of interaction between existing shield tunnel and stratum under surface surcharge in soft soil region[J]. Journal of the China Railway Society, 2018, 40(10): 95-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201810014.htm [20] 梁发云, 方衍其, 袁强, 等. 软、硬地层中局部堆载对隧道横向变形影响的试验研究[J]. 同济大学学报(自然科学版), 2021, 49(3): 322-331, 430. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103004.htmLIANG Fa-yun, FANG Yan-qi, YUANG Qiang, et al. Experimental study of the influence of surface surcharge on tunnel lateral deformation in soft and hard soil[J]. Journal of Tongji University (Natural Science), 2021, 49(3): 322-331, 430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103004.htm [21] 梁发云, 袁强, 李家平, 等. 堆载作用下土体分层特性对地铁隧道纵向变形的影响研究[J]. 岩土工程学报, 2020, 42(1): 63-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001013.htmLIANG Fa-yun, YUAN Qiang, LI Jia-ping, et al. Influences of soil characteristics on longitudinal deformation of shield tunnels induced by surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 63-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001013.htm [22] 晏启祥, 王二力, 张君臣, 等. 列车荷载作用下联络横通道对平行交叉盾构隧道振动影响机制的试验研究[J]. 岩石力学与工程学报, 2022, 41(增1): 2892-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1026.htmYAN Qi-xiang, WANG Er-li, ZHANG Jun-chen, et al. Experimental study on the mechanism of the influence of transverse passage on vibration response of parallel cross shield tunnel under train load[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2892-2900. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1026.htm [23] 晏启祥, 李彬, 张蒙, 等. 列车撞击荷载下盾构隧道双层衬砌管片结构的动力响应特性[J]. 中南大学学报(自然科学版), 2015, 46(9): 3527-3534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509049.htmYAN Qi-xiang, LI Bin, ZHANG Meng, et al. Dynamic response characteristics of double lining segment structure of shield tunnel under train impact load[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3527-3534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509049.htm [24] 黄大维, 周顺华, 冯青松, 等. 盾构隧道与地层相互作用的模型试验设计[J]. 铁道学报, 2018, 40(6): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806018.htmHUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Scaled model test design for interaction between shield tunnel and stratum[J]. Journal of the China Railway Society, 2018, 40(6): 127-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806018.htm [25] 叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501011.htmYE Fei, YANG Peng-bo, MAO Jia-hua, et al. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 83-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501011.htm [26] LI Xiao-jun, ZHOU Xiao-zhou, HONG Bi-chen, et al. Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces[J]. Tunnelling and Underground Space Technology, 2019, 86: 128-137. [27] YE Fei, GOU Chang-fei, SUN Hai-dong, et al. Model test study on effective ratio of segment transverse bending rigidity of shield tunnel[J]. Tunnelling and Underground Space Technology, 2014, 41: 193-205. [28] 张稳军, 张新新, 宋晓龙. 盾构隧道斜螺栓接头受力性能与火灾下温度分布规律[J]. 交通运输工程学报, 2018, 18(6): 37-49. doi: 10.19818/j.cnki.1671-1637.2018.06.005ZHANG Wen-jun, ZHANG Xin-xin, SONG Xiao-long. Mechanical properties of shield tunnel with inclined bolt joint and temperature distribution law under fire[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 37-49. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.06.005 [29] 黄大维, 周顺华, 冯青松, 等. 通缝拼装盾构隧道横向刚度有效率计算方法及其影响因素[J]. 中国铁道科学, 2017, 38(3): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703008.htmHUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Calculation method for transverse effective rigidity ratio of shield-driven tunnel with straight joint and its influential factors[J]. China Railway Science, 2017, 38(3): 47-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703008.htm [30] 黄大维, 冯青松, 唐柏赞, 等. 圆形盾构隧道水土压力表示与计算半径取值分析[J]. 地下空间与工程学报, 2020, 16(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001008.htmHUANG Da-wei, FENG Qing-song, TANG Bai-zan, et al. Analysis on expression method of surrounding pressure and value of calculation radius of circular shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001008.htm -