Calibration method of asphalt pavement fatigue damage prediction model based on accelerated pavement test
-
摘要: 为提高工程应用中沥青路面疲劳损伤预估模型的可靠性,提出了一种结合小型试件试验与足尺路面加速加载试验的模型标定方法;基于路面疲劳损伤发展特征分析,提出采用非线性增量递归法的沥青路面累积疲劳损伤分析方法,适用于疲劳损伤预估模型由小尺寸试验向足尺试验条件的转移与外推;基于小尺寸试件试验疲劳寿命预估模型构建了足尺沥青混合料层疲劳损伤预估模型,利用疲劳寿命预估模型转移方程实现足尺路面加速加载条件下的疲劳损伤预估;为确定模型转移方程,提出了基于路面加速加载试验的疲劳损伤标定方程,推导了疲劳损伤预估模型待定系数标定方法;利用重型荷载模拟器实施了级配碎石组合式基层沥青路面足尺试验路段加速加载试验,结合路面钻芯试样动态模量与四点弯曲疲劳试验,标定和验证了沥青混合料层的疲劳损伤预估模型。研究结果表明:非线性增量递归法可考虑材料非线性、性能衰减和加载历史对结构层疲劳损伤累积的影响,符合实际路面疲劳损伤发展规律;利用标定确立的疲劳损伤预估模型可以预测试验路不同加载区间沥青混合料层的累积疲劳损伤,50%和90%的预测值相对实测结果的误差分别小于3.1%和20.0%,表明该预估模型具有一定可靠性;提出的模型标定方法,可为基于路面加速加载试验的沥青路面疲劳损伤预估模型建立提供参考,为路面设计和养护维修决策提供更加可靠的性能预估模型。Abstract: To improve the reliability of fatigue damage prediction model for asphalt pavements in engineering applications, a calibration method of the model was proposed based on the small-scale-specimen test and full-scale accelerated pavement test (APT). The evolution characteristics of asphalt pavement fatigue damage were analyzed to establish a cumulative fatigue damage analysis method by the nonlinear incremental recursive (NIR) method, which was suitable for the shift and extrapolation of the fatigue damage prediction model from small-scale test to full-scale test. The fatigue damage prediction model for the full-scale asphalt mixture layer was established based on the fatigue life prediction model obtained by small-scale specimen test, and the transfer equation of the fatigue life prediction model was used as the tool to predict the fatigue damage under the full-scale APT condition. In order to determine the model transfer equation, the fatigue damage calibration equation based on the APT was proposed, and the calibration methods of the undetermined coefficients were derived. The APT was carried out by the heavy vehicle simulator on the full-scale asphalt pavement test sections with graded-crushed stone composite base. The fatigue damage prediction model of asphalt mixture layer was calibrated and validated by integrating the dynamic modulus test and the four-points-bending-fatigue test results of the core samples drilled from the APT sections. Research results show that the NIR method can consider the impacts of material nonlinearity, performance decay, and loading history on the fatigue damage accumulation of asphalt pavement structure, conforming to the actual evolution law of the pavement fatigue damage. The calibrated fatigue damage prediction model can be used to predict the cumulative fatigue damages of the asphalt mixture layers of test sections in different loading intervals, and 50% and 90% of the predicted results have an error of less than 3.1% and 20.0% compared to the measured results, respectively, indicating that the calibrated prediction model has certain reliability. Therefore, the proposed model calibration method can be taken as a reference for the establishment of fatigue damage prediction model of asphalt pavement based on the APT and provide more reliable performance prediction models for the decision-making on pavement design and maintenance.
-
表 1 HVS加速加载试验加载时间与加载区间划分
Table 1. Loading time and loading interval division of HVS accelerated pavement test
加载区间 加载时间 加载次数/104 轴载/kN S1-1/ S2-1 2018-02-26~2018-03-19 0~29 50 S1-2/S2-2 2019-08-06~2019-08-18 30~43 40 S1-3/S2-3 2019-08-18~2019-09-11 44~70 50 S1-4/S2-4 2019-09-11~2019-09-16 71~75 40 S1-5/S2-5 2019-09-17~2019-09-20 76~80 55 S1-6/S2-6 2019-09-21~2019-09-25 81~85 60 S1-7/S2-7 2019-09-26~2019-09-29 86~90 70 表 2 疲劳损伤模型标定与归一化应变能计算结果
Table 2. Calculation results of fatigue damage model calibration and normalized strain energy
加载区间 ai b R2 Ei/MPa εi/10-6 Ui S1-1 0.004 0 0.366 7 0.206 3 36 901 73.3 11.95 S1-2 0.003 4 0.366 7 0.791 8 23 410 98.6 13.71 S2-1 0.003 3 0.366 7 0.359 9 38 453 68.8 10.96 S2-2 0.002 4 0.366 7 0.233 9 23 600 79.5 8.99 表 3 疲劳损伤标定模型拟合与归一化应变能计算结果
Table 3. Calculation results of fatigue damage calibration model regression and normalized strain energy
加载区间 ai b R2 εi/10-6 Ei/MPa Ui S1-3 0.004 4 0.366 7 0.782 1 103.2 21 925 14.05 S1-4 0.003 6 0.366 7 0.946 9 92.7 22 629 11.71 S1-5 0.004 2 0.366 7 0.800 8 107.6 19 339 13.48 S1-6 0.004 6 0.366 7 0.914 8 110.3 20 393 14.94 S1-7 0.004 9 0.366 7 0.904 7 120.9 18 301 16.12 S2-3 0.004 2 0.366 7 0.651 6 109.9 20 758 15.11 S2-4 0.003 0 0.366 7 0.859 4 88.7 21 990 10.42 S2-5 0.004 2 0.366 7 0.966 3 107.5 20 083 13.97 S2-6 0.004 7 0.366 7 0.855 2 102.6 24 249 15.38 S2-7 0.004 6 0.366 7 0.984 9 110.4 21 692 15.92 -
[1] 仰建岗, 王秉纲, 陈拴发. 基于修正Neuber方程的沥青路面裂缝形成疲劳寿命预估方法[J]. 交通运输工程学报, 2007, 7(2): 50-54. http://transport.chd.edu.cn/article/id/200702011YANG Jian-gang, WANG Bing-gang, CHEN Shuan-fa. Estimating method of fatigue life during cracking initiation of asphalt pavement based on modified Neuber equation[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2): 50-54. (in Chinese) http://transport.chd.edu.cn/article/id/200702011 [2] 王其峰, 吴文娟, 申全军, 等. 全厚式沥青路面材料抗疲劳性能及疲劳预估模型[J]. 山东交通学院学报, 2022, 30(3): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJT202203014.htmWANG Qi-feng, WU Wen-juan, SHEN Quan-jun, et al. Fatigue performance and prediction model of full thickness asphalt pavement materials[J]. Journal of Shandong Jiaotong University, 2022, 30(3): 102-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JNJT202203014.htm [3] 徐建平. 高模量沥青混合料路面耐久性能研究[D]. 重庆: 重庆交通大学, 2019.XU Jian-ping. Study on durability of high modulus asphalt mixture pavement[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese) [4] 袁杰豪. 应力与应变控制模式下沥青混合料非线性疲劳损伤特性研究[D]. 长沙: 长沙理工大学, 2017.YUAN Jie-hao. Study on nonlinear fatigue damage characteristics of asphalt mixtures under stress and strain control[D]. Changsha: Changsha University of Science and Technology, 2017. (in Chinese) [5] 刘自若. 温拌再生沥青混合料路用性能研究[D]. 西安: 长安大学, 2019.LIU Zi-ruo. Research on road performance of warm mix recycled asphalt mixture[D]. Xi'an: Chang'an University, 2019. (in Chinese) [6] 陈渊召, 陈爱玖, 李超杰, 等. 纳米氧化锌改性沥青混合料性能分析[J]. 中国公路学报, 2017, 30(7): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707004.htmCHEN Yuan-zhao, CHEN Ai-jiu, LI Chao-jie, et al. Analysis of performance for nano-ZnO modified asphalt mixture[J]. China Journal of Highway and Transport, 2017, 30(7): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707004.htm [7] 吕松涛, 刘超超, 屈芳婷, 等. 沥青混合料疲劳性能试验与表征方法综述[J]. 中国公路学报, 2020, 33(10): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202010003.htmLYU Song-tao, LIU Chao-chao, QU Fang-ting, et al. Test methods and characterization of fatigue performance of asphalt mixtures: a review[J]. China Journal of Highway and Transport, 2020, 33(10): 67-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202010003.htm [8] 童巨声. 柔性基层路面车辙与疲劳预估研究[D]. 南京: 东南大学, 2019.TONG Ju-sheng. Research on rutting and fatigue prediction of flexible base pavement[D]. Nanjing: Southeast University, 2019. (in Chinese) [9] 李赫. 动静荷载作用下沥青混合料及沥青路面黏弹性力学响应分析[D]. 长春: 吉林大学, 2021.LI He. Viscoelastic mechanical response analysis of asphalt mixture and asphalt pavement under dynamic and static loads[D]. Changchun: Jilin University, 2021. (in Chinese) [10] 王伟轩. 沥青路面基于耦合损伤粘弹性模型的疲劳破坏规律研究[D]. 北京: 清华大学, 2021.WANG Wei-xuan. The study of fatigue damage on asphalt pavement based on viscoelastic damage model[D]. Beijing: Tsinghua University, 2021. (in Chinese) [11] 董忠红, 徐全亮, 吕彭民. 基于加速加载试验的半刚性基层沥青路面动力响应[J]. 中国公路学报, 2011, 24(2): 1-5, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201102003.htmDONG Zhong-hong, XU Quan-liang, LYU Peng-min. Dynamic response of semi-rigid base asphalt pavement based on accelerated pavement test[J]. China Journal of Highway and Transport, 2011, 24(2): 1-5, 11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201102003.htm [12] 潘友强, 杨军. 国内外足尺加速路面试验研究概况[J]. 中外公路, 2005(6): 137-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200506051.htmPAN You-qiang, YANG Jun. Survey of full-scale accelerated pavement test at home and abroad[J]. Journal of China and Foreign Highway, 2005(6): 137-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200506051.htm [13] 陈杰. 基于加速加载试验的沥青混合料疲劳损伤特性研究[D]. 长沙: 长沙理工大学, 2015.CHEN Jie. Research on fatigue damage characteristic of asphalt mixture based on accelerated loading test[D]. Changsha: Changsha University of Science and Technology, 2015. (in Chinese) [14] 张蕾, 周兴业, 王旭东. 基于RIOHTrack足尺加速加载试验的长寿命沥青路面行为研究进展[J]. 科学通报, 2020, 65(30): 3247-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030005.htmZHANG Lei, ZHOU Xing-ye, WANG Xu-dong. Research progress of long-life asphalt pavement behavior based on the RIOHTrack full-scale accelerated loading test[J]. Chinese Science Bulletin, 2020, 65(30): 3247-3258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030005.htm [15] 王勋. 基于加速加载试验的高寒地区沥青路面疲劳性能研究[D]. 济南: 山东交通学院, 2020.WANG Xun. Study on fatigue performance of asphalt pavement in highly cold region based on accelerated loading test[D]. Jinan: Shandong Jiaotong University, 2020. (in Chinese) [16] KWON O, CHOUBANE B, GREEN J, et al. Evaluation of the performance of highly modified asphalt binder using accelerated pavement testing[J]. International Journal of Pavement Engineering, 2021, 22(13): 1688-1696. [17] PEREZ S A, BALAY J M, TAMAGNY P, et al. Accelerated pavement testing and modeling of reflective cracking in pavements[J]. Engineering Failure Analysis, 2007, 14(8): 1526-1537. [18] 张小宁. 基于大型结构模型试验的动荷载作用下沥青路面结构响应研究[D]. 济南: 山东交通学院, 2018.ZHANG Xiao-ning. Research on structural response of asphalt pavement under dynamic load based on large structure model test[D]. Jinan: Shandong Jiaotong University, 2018. (in Chinese) [19] 周丹, 马泽欣, 刘黎萍, 等. 基于足尺加速加载试验的现役沥青路面疲劳特性研究[J]. 公路交通科技, 2020, 37(1): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202001003.htmZHOU Dan, MA Ze-xin, LIU Li-ping, et al. Study on fatigue performance of in-service asphalt pavement based on full-scale accelerated loading test[J]. Journal of Highway and Transportation Research and Development, 2020, 37(1): 17-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202001003.htm [20] 张乃计. 车载和温度综合作用下沥青路面疲劳寿命研究[D]. 重庆: 重庆交通大学, 2021.ZHANG Nai-ji. Study on fatigue life of asphalt pavement under coupling action of traffic load and temperature[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese) [21] 陈少幸, 张肖宁, 孟书涛, 等. 基于ALF加速加载试验的沥青层疲劳损伤[J]. 公路交通科技, 2012, 29(1): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201201004.htmCHEN Shao-xing, ZHANG Xiao-ning, MENG Shu-tao, et al. Fatigue damage in asphalt layer based on ALF accelerated loading test[J]. Journal of Highway and Transportation Research and Development, 2012, 29(1): 18-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201201004.htm [22] HAN Zhen-qiang, SHA Ai-min, HU Li-qun, et al. Modeling to simulate inverted asphalt pavement testing: an emphasis on cracks in the semirigid subbase[J]. Construction and Building Materials, 2021, 306: 124790. [23] MOGHADDAM T B, KARIM M R, ABDELAZIZ M. A review on fatigue and rutting performance of asphalt mixes[J]. Scientific Research and Essays, 2011, 6(4): 670-682. [24] CHENG Huai-lei, LIU Jia-ning, SUN Li-jun, et al. Critical position of fatigue damage within asphalt pavement considering temperature and strain distribution[J]. International Journal of Pavement Engineering, 2021, 22(14): 1773-1784. [25] OZER H, AL-QADI I L, SINGHVI P, et al. Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests[J]. International Journal of Pavement Engineering, 2018, 19(3): 264-278. [26] WANG Zhi-chen, GUO Nai-sheng, WANG Shuang, et al. Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach[J]. The Journal of Supercomputing, 2021, 77(2): 1354-1376. [27] ZHOU Zhou, GU Xing-yu, JIANG Ji-wang, et al. Fatigue cracking performance evaluation of laboratory-produced polymer modified asphalt mixture containing reclaimed asphalt pavement material[J]. Construction and Building Materials, 2019, 216: 379-389. [28] ELNASHAR G, BHAT R B, SEDAGHATI R. Modeling pavement damage and predicting fatigue cracking of flexible pavements based on a combination of deterministic method with stochastic approach using Miner's hypothesis[J]. SN Applied Sciences, 2019, 1(3): 229. [29] DOTTO BUENO L, SCHUSTER S L, SPECHT L P, et al. Asphalt pavement design optimisation: a case study using viscoelastic continuum damage theory[J]. International Journal of Pavement Engineering, 2022, 23(4): 1070-1082. [30] SUN Ya-zhen, FANG Chen-ze, WANG Jin-chang, et al. Energy-based approach to predict fatigue life of asphalt mixture using three-point bending fatigue test[J]. Materials, 2018, 11(9): 1696.