留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现浇ECC和预制榫卯混合连接装配式RC桥墩抗震性能

林上顺 林永捷 夏樟华 赵锦冰 黎雅乐

林上顺, 林永捷, 夏樟华, 赵锦冰, 黎雅乐. 现浇ECC和预制榫卯混合连接装配式RC桥墩抗震性能[J]. 交通运输工程学报, 2023, 23(5): 104-117. doi: 10.19818/j.cnki.1671-1637.2023.05.006
引用本文: 林上顺, 林永捷, 夏樟华, 赵锦冰, 黎雅乐. 现浇ECC和预制榫卯混合连接装配式RC桥墩抗震性能[J]. 交通运输工程学报, 2023, 23(5): 104-117. doi: 10.19818/j.cnki.1671-1637.2023.05.006
LIN Shang-shun, LIN Yong-jie, XIA Zhang-hua, ZHAO Jin-bing, LI Ya-le. Anti-seismic performance of cast-in-place ECC and prefabricated mortise-tenon hybrid connection assembled RC bridge piers[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 104-117. doi: 10.19818/j.cnki.1671-1637.2023.05.006
Citation: LIN Shang-shun, LIN Yong-jie, XIA Zhang-hua, ZHAO Jin-bing, LI Ya-le. Anti-seismic performance of cast-in-place ECC and prefabricated mortise-tenon hybrid connection assembled RC bridge piers[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 104-117. doi: 10.19818/j.cnki.1671-1637.2023.05.006

现浇ECC和预制榫卯混合连接装配式RC桥墩抗震性能

doi: 10.19818/j.cnki.1671-1637.2023.05.006
基金项目: 

国家自然科学基金项目 52008187

福建省自然科学基金项目 2019J01779

福建省自然科学基金项目 2020J01477

详细信息
    作者简介:

    林上顺(1972-),男,福建永泰人,福建理工大学教授,工学博士,从事装配式桥梁结构研究

    通讯作者:

    夏樟华(1980-),男,浙江淳安人,福州大学研究员,工学博士

  • 中图分类号: U443.22

Anti-seismic performance of cast-in-place ECC and prefabricated mortise-tenon hybrid connection assembled RC bridge piers

Funds: 

National Natural Science Foundation of China 52008187

Natural Science Foundation of Fujian Province 2019J01779

Natural Science Foundation of Fujian Province 2020J01477

More Information
  • 摘要: 为提高装配式钢筋混凝土(RC)桥墩的抗震性能,提出采用现浇工程水泥基复合材料(ECC)和预制榫卯混合连接的新型接头构造;开展了3个采用混合接头连接(以现浇ECC段高度与凹槽深度为变化参数,编号为DZ-1、AC-200、XJ-250)和1个采用现浇ECC湿接缝连接(编号为PT-1)的装配式RC桥墩试件的拟静力试验;建立了经试验验证的ABAQUS有限元模型,分析了轴压比、长细比、凹槽深度、现浇ECC段高度等参数对装配式RC桥墩抗震性能的影响。分析结果表明:4个桥墩试件破坏模式均为压弯破坏,且各试件的ECC现浇段均未发生破坏;与PT-1试件相比,现浇ECC和预制榫卯混合连接装配式RC桥墩的峰值荷载增大了25.74%~30.03%,极限位移增大了22.75%~106.39%,残余位移下降了43.70%~61.42%,具有较好的抗震性能;AC-200试件的凹槽深度最大,其残余位移大于其他装配式桥墩,且耗能能力较差;装配式桥墩的峰值荷载和屈服荷载随轴压比、现浇ECC段高度的提高而提高,随着长细比的提高而下降;延性系数随着现浇ECC段高度的提高而提高,随着长细比、轴压比的提高而下降。建议混合连接的凹槽深度不宜超过凸榫边长的75%。

     

  • 图  1  试件构造

    Figure  1.  Structures of specimens

    图  2  纵筋应变片布置(单位:mm)

    Figure  2.  Arrangements of longitudinal bar strain gauges (unit: mm)

    图  3  加载装置

    Figure  3.  Loading device

    图  4  试件DZ-1损伤情况

    Figure  4.  Damages of DZ-1 specimen

    图  5  纵筋的荷载-钢筋应变曲线对比

    Figure  5.  Comparison of load-reinforcement strain curves of longitudinal bar

    图  6  各试件的最终破坏

    Figure  6.  Final damages of each specimen

    图  7  各试件的破坏形态

    Figure  7.  Failure modes of each specimen

    图  8  各试件滞回曲线

    Figure  8.  Hysteretic curves of each specimen

    图  9  骨架曲线

    Figure  9.  Skeleton curves

    图  10  残余位移曲线

    Figure  10.  Residual displacement curves

    图  11  PVA-ECC应力-应变关系

    Figure  11.  Stress-strain relationship of PVA-ECC

    图  12  钢筋应力-应变关系

    Figure  12.  Stress-strain relationship of steel reinforcement

    图  13  网格划分

    Figure  13.  Grid divisions

    图  14  接触条件

    Figure  14.  Contact conditions

    图  15  部分试件滞回曲线对比

    Figure  15.  Comparison of hysteretic curves of some specimens

    图  16  不同长细比模型的骨架曲线

    Figure  16.  Skeleton curves of models with different length-to-slender ratios

    图  17  不同轴压比模型的骨架曲线

    Figure  17.  Skeleton curves of models with different axial compression ratios

    图  18  不同凹槽深度模型的骨架曲线

    Figure  18.  Skeleton curves of models with different depths of notch

    图  19  不同ECC段高度模型的骨架曲线

    Figure  19.  Skeleton curves of models with different cast-in-place ECC segment heights

    图  20  不同墩底混凝土高度模型的骨架曲线

    Figure  20.  Skeleton curves of concrete height models at different pier bottom

    图  21  不同凸榫宽度模型的骨架曲线

    Figure  21.  Skeleton curves of models with different tenon widths

    表  1  骨架曲线特征值对比

    Table  1.   Comparison of characteristic values of skeleton curves

    模型 Py/kN Dy/mm Pm/kN Dm/mm Pu/kN Du/mm μd
    PT-1 83.99 10.85 97.9 19.3 83.22 32.22 2.97
    DZ-1 103.22 15.82 123.4 32.9 104.89 60.57 3.83
    AC-200 107.91 16.37 123.1 24.0 104.64 39.55 2.42
    XJ-250 108.61 18.71 127.3 44.9 108.20 66.50 3.55
    下载: 导出CSV

    表  2  不同长细比模型的特征值

    Table  2.   Eigenvalues of models with different length-to-slender ratios

    模型 长细比 Py/kN Dy/mm Pm/kN Dm/mm Du/mm μd
    L1 3 127.02 4.39 150.98 12 56.45 12.86
    L2 4 93.90 5.19 113.19 24 64.54 12.44
    L3 5 72.12 6.88 85.96 28 68.18 9.91
    L4 6 57.47 8.47 68.41 32 73.35 8.66
    L5 7 48.79 10.51 57.06 36 87.01 8.28
    下载: 导出CSV

    表  3  不同轴压比模型的特征值

    Table  3.   Eigenvalues of models with different axial compression ratios

    模型 轴压比 Py/kN Dy/mm Pm/kN Dm/mm Du/mm μd
    C1 0.10 71.38 5.16 89.33 24 74.94 14.52
    C2 0.15 83.46 5.20 103.69 24 71.63 13.78
    C3 0.20 92.13 5.23 112.38 24 65.63 12.55
    C4 0.25 104.36 5.42 126.84 24 51.67 9.53
    C5 0.30 115.22 5.83 136.09 24 45.33 7.77
    下载: 导出CSV

    表  4  不同凹槽深度模型的特征值

    Table  4.   Eigenvalues of models with different depths of notch

    模型 凹槽深度/mm Py/kN Dy/mm Pm/kN Dm/mm Du/mm μd
    D1 100 97.25 5.38 118.68 20 58.99 10.96
    D2 150 92.13 5.23 112.38 24 65.63 12.55
    D3 200 92.43 6.61 113.89 24 47.79 7.23
    D4 250 93.04 6.32 112.78 24 46.36 7.34
    D5 300 89.38 5.95 110.31 24 45.21 7.60
    下载: 导出CSV

    表  5  不同ECC段高度模型的特征值

    Table  5.   Eigenvalues of models with different cast-in-place ECC segment heights

    模型 ECC厚度/mm Py/kN Dy/mm Pm/kN Dm/mm Du/mm μd
    H1 100 90.45 4.50 103.93 20 48.93 10.87
    H2 150 91.83 4.76 108.42 24 56.68 11.89
    H3 200 92.13 5.23 112.38 24 65.62 12.55
    H4 250 93.78 5.35 113.79 24 71.51 13.37
    H5 300 93.53 5.42 114.52 24 75.27 13.89
    下载: 导出CSV

    表  6  不同墩底混凝土高度模型的特征值

    Table  6.   Eigenvalues of concrete height models at different pier bottoms

    模型 墩底RC高度/mm Py/kN Dy/mm Pm/kN Dm/mm Du/mm μd
    T1 100 93.31 5.14 113.20 20 50.96 9.92
    T2 150 92.98 4.99 112.91 24 63.36 12.68
    T3 200 92.46 5.03 111.74 24 62.42 12.41
    T4 250 91.84 4.76 108.42 24 59.24 12.44
    T5 300 91.31 4.72 107.59 24 57.58 12.19
    下载: 导出CSV

    表  7  不同凸榫宽度模型的特征值

    Table  7.   Eigenvalues of models with different tenon widths

    模型 凸榫宽度/mm Py/kN Dy/mm Pm/kN Dm/mm Du/mm μd
    W1 150 91.85 5.02 111.34 24 53.04 10.57
    W2 175 93.35 5.08 111.73 24 62.42 12.29
    W3 200 92.13 5.23 112.38 24 65.63 12.55
    W4 225 93.46 5.14 112.76 24 69.13 13.45
    W5 250 93.56 5.18 113.54 24 71.97 13.89
    下载: 导出CSV
  • [1] 黄云青, 赵建锋. 不同连接方式对预制拼装桥墩抗震性能的影响[J]. 青岛理工大学学报, 2019, 40(6): 38-43. doi: 10.3969/j.issn.1673-4602.2019.06.006

    HUANG Yun-qing, ZHAO Jian-feng. Influence of different connection modes on seismic performance of precast segmental assembly bridge pier[J]. Journal of Qingdao University of Technology, 2019, 40(6): 38-43. (in Chinese) doi: 10.3969/j.issn.1673-4602.2019.06.006
    [2] 魏红一, 肖纬, 王志强, 等. 采用套筒连接的预制桥墩抗震性能试验研究[J]. 同济大学学报(自然科学版), 2016, 44(7): 1010-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607005.htm

    WEI Hong-yi, XIAO Wei, WANG Zhi-qiang, et al. Experimental study on seismic performance of precast bridge pier with grouted splice sleeve[J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1010-1016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607005.htm
    [3] 谭逸波, 谭昱, 陈儒发, 等. 分节式预制墩身干接缝施工关键技术应用研究[J]. 公路, 2015, 60(11): 83 -86. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201511019.htm

    TAN Yi-bo, TAN Yu, CHEN Ru-fa, et al. Application research on key technology of dry joint construction of segmented precast pier body[J]. Highway, 2015, 60(11): 83-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201511019.htm
    [4] 王志强, 葛继平, 魏红一, 等. 节段拼装桥墩抗震性能研究进展[J]. 地震工程与工程振动, 2009, 29(4): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200904021.htm

    WANG Zhi-qiang, GE Ji-ping, WEI Hong-yi, et al. Recent development in seismic research of segmental bridge columns[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4): 147-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200904021.htm
    [5] 王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展: 新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903003.htm

    WANG Jing-quan, WANG Zhen, GAO Yu-feng, et al. Review on aseismic behavior of precast bridge piers: new material, new concept, and new application[J]. Engineering Mechanics, 2019, 36(3): 1-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903003.htm
    [6] 林上顺, 林永捷, 夏樟华, 等. 不同拼接构造的装配式圆柱墩偏压性能试验[J]. 工业建筑, 2022, 52(4): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202204013.htm

    LIN Shang-shun, LIN Yong-jie, XIA Zhang-hua, et al. Experimental research on mechanical properties of prefabricated cylindrical piers with different splicing structures under eccentric compression[J]. Industrial Construction, 2022, 52(4): 91-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202204013.htm
    [7] 欧智菁, 谢铭勤, 秦志清, 等. 带钢管剪力键的装配式混凝土桥墩抗震性能[J]. 西南交通大学学报, 2021, 56(6): 1169-1175, 1191. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202106005.htm

    OU Zhi-jing, XIE Ming-qin, QIN Zhi-qing, et al. Seismic performance test and FEM analysis of assembled concrete pier with sleeve and steel tube shear connector[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1169-1175, 1191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202106005.htm
    [8] 包龙生, 张远宝, 桑中伟, 等. 波纹管连接装配式桥墩抗震性能拟静力试验与数值模拟[J]. 中国公路学报, 2018, 31(12): 242-249. doi: 10.3969/j.issn.1001-7372.2018.12.024

    BAO Long-sheng, ZHANG Yuan-bao, SANG Zhong-wei, et al. Quasi-static test and numerical simulation analysis for seismic performance of fabricated assemble bridge piers base on bellows connection[J]. China Journal of Highway and Transport, 2018, 31(12): 242-249. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.12.024
    [9] 包龙生, 赵春艳, 张远宝, 等. 预应力连接型装配式混凝土桥墩受力性能研究[J]. 广西大学学报(自然科学版), 2021, 46(1): 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202101004.htm

    BAO Long-sheng, ZHAO Chun-yan, ZHANG Yuan-bao, et al. Study on mechanical properties of prestressed concrete bridge piers[J]. Journal of Guangxi University (Natural Science Edition), 2021, 46(1): 29-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202101004.htm
    [10] 葛继平, 夏樟华, 江恒. 灌浆波纹管装配式桥墩双向拟静力试验[J]. 中国公路学报, 2018, 31(12): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812023.htm

    GE Ji-ping, XIA Zhang-hua, JIANG Heng. Biaxial quasi-static experiment of precast segmental bridge piers with grouting corrugated pipe connection[J]. China Journal of Highway and Transport, 2018, 31(12): 222-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201812023.htm
    [11] XIA Zhang-hua, LIN Shang-shun, HE Yong-bo, et al. Seismic performance of precast bridge columns connected with grouted corrugated-metal duct through biaxial quasi-static experiment and modeling[J]. Earthquake Engineering and Engineering Vibration, 2021, 20(3): 747- 770.
    [12] 王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705010.htm

    WANG Zhi-qiang, WEI Zhang-zhen, WEI Hong-yi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway and Transport, 2017, 30(5): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705010.htm
    [13] 徐文靖, 马骉, 黄虹, 等. 套筒连接的预制拼装桥墩抗震性能研究[J]. 工程力学, 2020, 37(10): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010009.htm

    XU Wen-jing, MA Biao, HUANG Hong, et al. The seismic performance of precast bridge piers with grouted sleeves[J]. Engineering Mechanics, 2020, 37(10): 93-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010009.htm
    [14] HABER Z B, MACKIE K R, AL-JELAWY H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging[J]. Journal of Bridge Engineering, 2017, 22(10): 04017078.
    [15] 林上顺, 林永捷, 夏樟华, 等. UHPC和预制榫卯混合连接装配式RC桥墩拟静力试验[J]. 桥梁建设, 2023, 53(1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202301003.htm

    LIN Shang-shun, LIN Yong-jie, XIA Zhang-hua, et al. Quasi-static test of prefabricated segmental RC pier with hybrid UHPC and prefabricated mortise-tenon connections[J]. Bridge Construction, 2023, 53(1): 16-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202301003.htm
    [16] LI V C, WU H C. MAALEJ M, et al. Tensile behavior of cement-based composites with random discontinuous steel fibers[J]. Journal of the American Ceramic Society, 1996, 79(1): 74-78.
    [17] YANG E H, LI V C. Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model[J]. Construction and Building Materials, 2010, 24(2): 130-139.
    [18] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites[J]. Materials and Structures, 1995, 28(10): 586- 595.
    [19] CAI Xu, HUANG Wen-ke, WU Kuang-huai. Study of the self-healing performance of semi-flexible pavement materials grouted with engineered cementitious composites mortar based on a non-standard test[J]. Materials, 2019, 12(21): 3488.
    [20] 石达, 史才军, 吴泽媚, 等. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202107013.htm

    SHI Da, SHI Cai-jun, WU Ze-mei, et al. Advances in autogenous self-healing of cementitious materials[J]. Materials Reports, 2021, 35(7): 7096-7106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202107013.htm
    [21] 阚黎黎, 曹号, 盛昊煜, 等. 用纳米压痕技术表征超高韧性水泥基复合材料(ECC)的裂缝自愈合特性[J]. 材料科学与工程学报, 2016, 34(3): 394-399, 444. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201603012.htm

    KAN Li-li, CAO Hao, SHENG Hao-yu, et al. Nanoindentation characterization of self-healing engineered cementitious composites (ECC) materials[J]. Journal of Materials Science and Engineering, 2016, 34(3): 394-399, 444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201603012.htm
    [22] 张志刚, 张仁毅, 张沛, 等. 可自修复的高延性混凝土(ECC)在机场道面的适用性分析[J]. 重庆大学学报, 2021, 44(1): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202101011.htm

    ZHANG Zhi-gang, ZHANG Ren-yi, ZHANG Pei, et al. Feasibility study of engineered cementitious composites (ECC) with self-healing capacity for airfield pavement[J]. Journal of Chongqing University, 2021, 44(1): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202101011.htm
    [23] LI V C, WANG S, WU H C. Tensile strain-hardening behavior of PVA-ECC[J]. Materials Journal, 2011, 98(6): 483-492.
    [24] KAMADA T, LI V C. The effects of surface preparation on the fracture behavior of ECC/concrete repair system[J]. Cement and Concrete Composites, 2000, 22(6): 423-431.
    [25] 葛继平, 闫兴非, 王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报, 2018, 18(2): 42-52. doi: 10.19818/j.cnki.1671-1637.2018.02.005

    GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.02.005
    [26] 贾俊峰, 魏博, 欧进萍, 等. 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(5): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202105022.htm

    JIA Jun-feng, WEI Bo, OU Jin-ping, et al. Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator[J]. Journal of Vibration and Shock, 2021, 40(5): 154-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202105022.htm
    [27] DAWOOD H, ELGAWADY M, HEWES J. Behavior of segmental precast posttensioned bridge piers under lateral loads[J]. Journal of Bridge Engineering, 2012, 17(5): 735-746.
    [28] CAI Zhong-kui, WANG Zhen-yu, YANG T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal- and high-strength steel rebars[J]. Construction and Building Materials, 2018, 166: 945- 955.
    [29] 杜亮. ECC材料基本力学性能研究[D]. 苏州: 苏州科技学院, 2019.

    DU Liang. Experimental study on mechanical properties of ECC[D]. Suzhou: Suzhou University of Science and Technology, 2019. (in Chinese)
    [30] 包龙生, 王贺鑫, 汤维维, 等. 采用榫卯剪力键的预应力装配式双柱桥墩拟静力分析[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(4): 692-702. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201804015.htm

    BAO Long-sheng, WANG He-xin, TANG Wei-wei, et al. Pseudo static analysis of assembly type double column pier based on ABAQUS[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(4): 692-702. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201804015.htm
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  55
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回