留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

科隆蛋扣件区段钢轨吸振器抑制钢轨波磨的机理

崔晓璐 徐佳 李童 徐晓天 漆伟 刘津治

崔晓璐, 徐佳, 李童, 徐晓天, 漆伟, 刘津治. 科隆蛋扣件区段钢轨吸振器抑制钢轨波磨的机理[J]. 交通运输工程学报, 2023, 23(5): 118-128. doi: 10.19818/j.cnki.1671-1637.2023.05.007
引用本文: 崔晓璐, 徐佳, 李童, 徐晓天, 漆伟, 刘津治. 科隆蛋扣件区段钢轨吸振器抑制钢轨波磨的机理[J]. 交通运输工程学报, 2023, 23(5): 118-128. doi: 10.19818/j.cnki.1671-1637.2023.05.007
CUI Xiao-lu, XU Jia, LI Tong, XU Xiao-tian, QI Wei, LIU Jin-zhi. Mechanism of rail vibration absorber suppressing rail corrugation in Cologne-egg fastener section[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 118-128. doi: 10.19818/j.cnki.1671-1637.2023.05.007
Citation: CUI Xiao-lu, XU Jia, LI Tong, XU Xiao-tian, QI Wei, LIU Jin-zhi. Mechanism of rail vibration absorber suppressing rail corrugation in Cologne-egg fastener section[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 118-128. doi: 10.19818/j.cnki.1671-1637.2023.05.007

科隆蛋扣件区段钢轨吸振器抑制钢轨波磨的机理

doi: 10.19818/j.cnki.1671-1637.2023.05.007
基金项目: 

国家自然科学基金项目 52275176

重庆市自然科学基金项目 CSTB2022NSCQ-MSX1542

重庆市教育委员会科学技术研究项目 KJZD-K202100703

重庆市研究生科研创新项目 CYS23504

详细信息
    作者简介:

    崔晓璐(1990-),女,山东济南人,重庆交通大学教授,工学博士,从事轮轨摩擦学研究

  • 中图分类号: U211.5

Mechanism of rail vibration absorber suppressing rail corrugation in Cologne-egg fastener section

Funds: 

National Natural Science Foundation of China 52275176

Natural Science Foundation of Chongqing CSTB2022NSCQ-MSX1542

Science and Technology Research Program of Chongqing Municipal Education Commission KJZD-K202100703

Chongqing Graduate Research Innovation Project CYS23504

More Information
  • 摘要: 开展了重庆地铁1号线钢轨波磨的现场调研,建立了科隆蛋扣件小半径曲线区段车辆-轨道系统的动力学模型,研究了导向轮对通过该区段时的动力学特性;基于轮轨系统摩擦自激振动理论建立了相应区段轮对-钢轨-吸振器系统的有限元模型,应用复特征值法和瞬时动态法研究了钢轨波磨的形成机理和钢轨吸振器的抑制机理;采用控制变量法探究了钢轨吸振器连接参数和安装方式对钢轨波磨的影响规律。研究结果表明:科隆蛋扣件小半径曲线区段导向轮对与钢轨间的蠕滑力趋于饱和,容易引起轮轨系统发生频率为477.65 Hz的摩擦自激振动,从而导致低轨表面形成30~40 mm的钢轨波磨;安装钢轨吸振器能有效降低轮轨系统对应频率下的摩擦自激振动,进而抑制科隆蛋扣件小半径曲线区段钢轨波磨的产生;在一定范围内增大钢轨吸振器的连接刚度和连接阻尼,或改变钢轨吸振器的安装方式均有助于减小轮轨系统的摩擦自激振动,从而抑制波磨的产生和发展;当钢轨吸振器横向连接刚度和阻尼分别为60 MN·m-1和50 kN·s·m-1,纵向连接刚度和阻尼分别为60 MN·m-1和50 kN·s·m-1,垂向连接刚度和阻尼分别为120 MN·m-1和100 kN·s·m-1,并且钢轨吸振器连续安装在钢轨轨腰两侧,轮轨系统发生摩擦自激振动的可能性最小。

     

  • 图  1  科隆蛋扣件小半径曲线区段现场调研

    Figure  1.  Field investigation of sharp curved section with Cologne-egg fastener

    图  2  车辆-轨道系统动力学模型

    Figure  2.  Dynamical model of vehicle-track system

    图  3  导向轮对-钢轨-吸振器系统接触模型

    Figure  3.  Contact model of leading wheelset-rail-vibration absorber system

    图  4  轮对-钢轨-吸振器系统有限元模型

    Figure  4.  Finite element model of wheelset-rail-vibration absorber system

    图  5  导向轮对与钢轨间接触位置

    Figure  5.  Contact positions between leading wheelset and rail

    图  6  导向轮对的动力学特性

    Figure  6.  Dynamical characteristics of leading wheelset

    图  7  轮轨间法向接触力曲线

    Figure  7.  Normal contact force curves between wheel and rail

    图  8  轮轨间蠕滑力变化

    Figure  8.  Variations in creep force between wheel and rail

    图  9  轮轨间摩擦力和蠕滑力的关系

    Figure  9.  Relationships of creep force and friction force between wheel and rail

    图  10  安装吸振器前后轮轨系统的复特征值实部和模态

    Figure  10.  Real parts of complex eigenvalue and modes of wheel-rail system before and after installing vibration absorber

    图  11  钢轨表面测点分布

    Figure  11.  Distribution of measurement points on rail surface

    图  12  高轨和低轨表面垂向振动加速度变化

    Figure  12.  Variations of vertical vibration acceleration on surface of high rail and low rail

    图  13  轮对-钢轨-吸振器系统瞬时动态分析

    Figure  13.  Instantaneous dynamic analysis of wheelset-rail-vibration absorber system

    图  14  钢轨吸振器连接参数对比

    Figure  14.  Comparison of connection parameters of rail vibration absorber

    图  15  钢轨吸振器不同安装方式

    Figure  15.  Different installation methods of rail vibration absorber

    图  16  钢轨吸振器安装方式对比

    Figure  16.  Comparison of installation methods of rail vibration absorber

    表  1  轮对-钢轨-吸振器系统材料参数

    Table  1.   Material parameters of wheelset-rail-vibration absorber system

    参数 密度/(kg·m-3) 弹性模量/GPa 泊松比
    轮对 7 790 210.0 0.30
    钢轨 7 790 205.9 0.30
    吸振器 7 850 210.0 0.29
    下载: 导出CSV

    表  2  轮对-钢轨-吸振器系统连接参数

    Table  2.   Connection parameters of wheelset-rail-vibration absorber system

    参数 方向
    横向 垂向 纵向
    吸振器刚度/(MN·m-1) 15.00 30.00 15.00
    吸振器阻尼/(kN·s·m-1) 20.00 40.00 20.00
    扣件刚度/(MN·m-1) 7.58 12.07 7.58
    扣件阻尼/(kN·s·m-1) 974.27 1 361.12 974.27
    下载: 导出CSV
  • [1] 关庆华, 张斌, 熊嘉阳, 等. 地铁钢轨波磨的基本特征、形成机理和治理措施综述[J]. 交通运输工程学报, 2021, 21(1): 316-337. doi: 10.19818/j.cnki.1671-1637.2021.01.015

    GUAN Qing-hua, ZHANG Bin, XIONG Jia-yang, et al. Review on basic characteristics, formation mechanisms, and treatment measures of rail corrugation in metro systems[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 316-337. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.015
    [2] CHEN Guang-xiong, ZHOU Zhong-rong, OUYANG Hua-jiang, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [3] WU Bo-wen, CHEN Guang-xiong, LYU Jin-zhou, et al. Generation mechanism and remedy method of rail corrugation at a sharp curved metro track with Vanguard fasteners[J]. Journal of Low Frequency Noise, Vibration, and Active Control, 2020, 39(2): 368-381. doi: 10.1177/1461348419845992
    [4] 李伟, 曾全君, 朱士友, 等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 73(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005

    LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 73(1): 34-42. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.01.005
    [5] CORREA N, VADILLO E G, SANTAMARIA J, et al. A versatile method in the space domain to study short-wave rail undulatory wear caused by rail surface defects[J]. Wear, 2016, 352/353: 196-208. doi: 10.1016/j.wear.2016.02.012
    [6] CROFT B E, JONES C J C, THOMPSON D J. Modelling the effect of rail dampers on wheel-rail interaction forces and rail roughness growth rates[J]. Journal of Sound and Vibration, 2009, 323(1): 17-32.
    [7] THOMPSON D J, JONES C J C, WATERS T P, et al. A tuned damping device for reducing noise from railway track[J]. Applied Acoustics, 2007, 68(1): 43-57. doi: 10.1016/j.apacoust.2006.05.001
    [8] LI Wei, WANG An-bin, GAO Xiao-gang, et al. Development of multi-band tuned rail damper for rail vibration control[J]. Applied Acoustics, 2021, 184: 108370. doi: 10.1016/j.apacoust.2021.108370
    [9] WANG Yu-rong, WU Tian-xing. The growth and mitigation of rail corrugation due to vibrational interference between moving wheels and resilient track[J]. Vehicle System Dynamics, 2019, 58: 1257-1284.
    [10] WU Tian-xing. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper[J]. Wear, 2011, 271: 339-348. doi: 10.1016/j.wear.2010.10.040
    [11] QIAN Wei-ji, HUANG Zhi-qiang, OUYANG Hua-jiang, et al. Numerical investigation of the effects of rail vibration absorbers on wear behaviour of rail surface[J]. Journal of Engineering Tribology, 2019, 233(3): 424-438.
    [12] 邹钰, 文永蓬, 纪忠辉, 等. 车轨耦合下钢轨复合吸振器的减振方法[J]. 振动、测试与诊断, 2021, 41(5): 888-896. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202105009.htm

    ZOU Yu, WEN Yong-peng, JI Zhong-hui, et al. Vibration reduction method of rail composite shock absorber with vehicle-track coupling[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(5): 888-896. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202105009.htm
    [13] 文永蓬, 纪忠辉, 翁琳, 等. 双重钢轨吸振器对轨道系统的振动抑制研究[J]. 机械工程学报, 2020, 56(12): 184-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm

    WEN Yong-peng, JI Zhong-hui, WENG Lin, et al. Study on vibration suppression of track system via double rail vibration absorber[J]. Journal of Mechanical Engineering, 2020, 56(12): 184-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm
    [14] CHEN Jia-liang, LIU Wei-feng, SUN Xiao-jing. Effects of tuned rail damper on track dynamic characteristics optimization[J]. Procedia Engineering, 2017, 199: 1616-1622. doi: 10.1016/j.proeng.2017.09.071
    [15] JIN Hao, ZHOU Xin, SUN Xiao-jing, et al. Decay rate of rail with egg fastening system using tuned rail damper[J]. Applied Acoustics, 2021, 172: 107622. doi: 10.1016/j.apacoust.2020.107622
    [16] ZHAO Cai-you, WANG Ping, SHENG Xi, et al. Theoretical simulation and experimental investigation of a rail damper to minimize short-pitch rail corrugation[J]. Mathematical Problems in Engineering, 2017, 2017: 1-14.
    [17] QI Ya-yun, DAI Huan-yun, WU Ping-bo, et al. RSFT-RBF-PSO: a railway wheel profile optimization procedure and its application to a metro vehicle[J]. Vehicle System Dynamics, 2022, 60(10): 3398-3418.
    [18] CUI Xiao-lu, CHEN Guang-xiong, OUYANG Hua-jiang. Study on the effect of track curve radius on friction-induced oscillation of a wheelset-track system[J]. Tribology Transactions, 2019, 62(4): 688-700.
    [19] LIU Hai-ping, WU Tian-xing, LI Zeng-guan. Theoretical modelling and effectiveness study of rail vibration absorber for noise control[J]. Journal of Sound and Vibration, 2009, 323(3): 594-608.
    [20] WU Tian-xing. On the railway track dynamics with rail vibration absorber for noise reduction[J]. Journal of Sound and Vibration, 2008, 309(3): 739-755.
    [21] 钱韦吉, 黄志强. 蠕滑力饱和条件下钢轨吸振器抑制短波波磨的理论研究[J]. 振动与冲击, 2019, 38(14): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm

    QIAN Wei-ji, HUANG Zhi-qiang. Theoretical study on the suppression of short pitch rail corrugation induced vibration by rail vibration absorbers under saturated creep forces condition[J]. Journal of Vibration and Shock, 2019, 38(14): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm
    [22] WANG Zhi-qiang, LEI Zhen-yu. Rail corrugation characteristics in small radius curve section of Cologne-egg fasteners[J]. Journal of Mechanical Science and Technology, 2020, 34(11): 4499-4511.
    [23] QIAN Wei-ji, WU Yong-fang, CHEN Guang-xiong, et al. Experimental and numerical studies of the effects of a rail vibration absorber on suppressing short pitch rail corrugation[J]. Journal of Vibroengineering, 2016, 18(2): 1133-1144.
    [24] CUI Xiao-lu, CHEN Guang-xiong, YANG Hong-guang, et al. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners[J]. Vehicle System Dynamics, 2016, 54(3): 353-369.
    [25] ABUBAKAR A R, OUYANG Hua-jiang. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2): 143-155.
    [26] OUYANG Hua-jiang, NACK W, YUAN Yong-bin, et al. Numerical analysis of automotive disc brake squeal: a review[J]. International Journal of Vehicle Noise and Vibration, 2005, 1(3/4): 207-230.
    [27] EL BESHBICHI O. WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150.
    [28] CHEN Guang-xiong. Friction-induced vibration of a railway wheelset-track system and its effect on rail corrugation[J]. Lubricants, 2020, DOI: 10.3390/lubricants 8020018.
    [29] CUI Xiao-lu, HUANG Bo, DU Zi-xue, et al. Study on the mechanism of the abnormal phenomenon of rail corrugation in the curve interval of a mountain city metro[J]. Tribology Transactions, 2020, 63(6): 996-1007.
    [30] XU Jing-mang, WANG Kai, LIANG Xin-yuan, et al. Influence of viscoelastic mechanical properties of rail pads on wheel and corrugated rail rolling contact at high speeds[J]. Tribology International, 2020, 151: 106523.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  112
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回