留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深中通道沉管临时锚拉系统横向偏位模型试验

闫磊 韩恒 贺拴海 徐国平 邓斌 闫金宁 辛世豪

闫磊, 韩恒, 贺拴海, 徐国平, 邓斌, 闫金宁, 辛世豪. 深中通道沉管临时锚拉系统横向偏位模型试验[J]. 交通运输工程学报, 2023, 23(5): 129-142. doi: 10.19818/j.cnki.1671-1637.2023.05.008
引用本文: 闫磊, 韩恒, 贺拴海, 徐国平, 邓斌, 闫金宁, 辛世豪. 深中通道沉管临时锚拉系统横向偏位模型试验[J]. 交通运输工程学报, 2023, 23(5): 129-142. doi: 10.19818/j.cnki.1671-1637.2023.05.008
YAN Lei, HAN Heng, HE Shuan-hai, XU Guo-ping, DENG Bin, YAN Jin-ning, XIN Shi-hao. Lateral deviation model test of temporary anchorage system for immersed tube in Shenzhen-Zhongshan Link[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 129-142. doi: 10.19818/j.cnki.1671-1637.2023.05.008
Citation: YAN Lei, HAN Heng, HE Shuan-hai, XU Guo-ping, DENG Bin, YAN Jin-ning, XIN Shi-hao. Lateral deviation model test of temporary anchorage system for immersed tube in Shenzhen-Zhongshan Link[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 129-142. doi: 10.19818/j.cnki.1671-1637.2023.05.008

深中通道沉管临时锚拉系统横向偏位模型试验

doi: 10.19818/j.cnki.1671-1637.2023.05.008
基金项目: 

国家重点研发计划 2021YFB1600300

广东省重点领域研发计划项目 2019B111105002

陕西省交通运输厅科研项目 21-63K

详细信息
    作者简介:

    闫磊(1979-),男,山西运城人,长安大学副教授,工学博士,从事桥梁结构安全评估研究

  • 中图分类号: U443

Lateral deviation model test of temporary anchorage system for immersed tube in Shenzhen-Zhongshan Link

Funds: 

National Key Research and Development Program of China 2021YFB1600300

Key Areas Research and Development Program of Guangdong Province 2019B111105002

Scientific Research Project of Department of Transport of Shaanxi Province 21-63K

More Information
  • 摘要: 为探明深中通道沉管对接施工时锚拉系统的横向偏位限值,利用数值模拟和模型试验相结合的方法研究了锚拉系统的变位能力,建立了锚拉系统的有限元模型,基于有限元分析结果确定了足尺模型试验的加载分级标准;基于锚拉系统的实际受力状态确定了拉杆轴向荷载等级,试验模拟了水平及竖向各5 cm的初始安装偏差,分4个工况对结构进行了加载并测试了应力与偏位。研究结果表明:在给定拉杆轴向荷载下,随着横向偏位的增加,锚拉系统的安全储备均逐渐减小;单根拉杆在轴向试验荷载1 000 kN作用下,横向偏位为5 cm时,结构处于弹性工作状态,锚板和肋板最大Mises应力分别达到190.8和179.3 MPa,距其设计强度295和280 MPa分别具有35.3%和36.0%的安全储备;在1.2和1.5倍轴向试验荷载下,施加横向偏位至5 cm时,锚拉系统仍处于弹性工作状态,锚板和肋板最大Mises应力分别从221.1和196.8 MPa升至286.8和260.5 MPa,设计安全储备平均值由27.4%降至5.0%,拉杆最大应力从473.8 MPa升至623.7 MPa,屈服安全储备由43.3%降至25.3%;极限侧推试验中,在1.5倍轴向试验荷载下,当横向偏位为6 cm时,锚板达到设计强度,继续增大至12.8 cm时,锚板率先屈服,认为该锚拉系统已失效,此时拉杆应力为704.8 MPa,屈服安全储备为15.6%,故建议沉管水下对接施工的横向偏位控制值为6 cm。

     

  • 图  1  深中通道地理位置

    Figure  1.  Location of Shenzhen-Zhongshan Link

    图  2  沉管隧道纵断面布置

    Figure  2.  Vertical section layout of immersed tube tunnel

    图  3  临时锚拉系统构造

    Figure  3.  Structure of temporary anchorage system

    图  4  足尺试验模型构造(单位:mm)

    Figure  4.  Structure of full-scale test model (unit: mm)

    图  5  钢材σ-ε关系曲线

    Figure  5.  σ-ε curve of steel

    图  6  有限元模型

    Figure  6.  Finite element model

    图  7  单元选取与网格划分

    Figure  7.  Element selection and grid division

    图  8  边界条件与荷载施加

    Figure  8.  Boundary conditions and load applications

    图  9  临时锚拉系统Mises应力云图

    Figure  9.  Mises stress nephograms of temporary anchorage system

    图  10  沉管最终接头纵断面

    Figure  10.  Vertical section of immersed tube final joint

    图  11  加载现场总体布置

    Figure  11.  General layout of loading site

    图  12  应变测点布置(单位:mm)

    Figure  12.  Layout of strain testing points (unit: mm)

    图  13  工况1典型测点应力-位移曲线

    Figure  13.  Stress-displacement curves of typical measuring points under condition 1

    图  14  工况2典型测点应力-位移曲线

    Figure  14.  Stress-displacement curves of typical measuring points under condition 2

    图  15  工况3典型测点应力-位移曲线

    Figure  15.  Stress-displacement curves of typical measuring points under condition 3

    图  16  工况4典型测点应力-位移曲线

    Figure  16.  Stress-displacement curves of typical measuring points under condition 4

    表  1  计算参数

    Table  1.   Calculation parameters

    构件 t/mm 材料 fd/MPa fy/MPa
    锚板 40 Q390C 295 390
    肋板 50 Q390C 280 390
    拉杆 65 40CrNiMoA 835
    下载: 导出CSV

    表  2  加载工况

    Table  2.   Loading conditions

    工况 试验内容
    1 双向预偏5 cm及单根拉杆轴向加载至1 000 kN(试验荷载),横向加载至5 cm,分5级加载
    2 双向预偏5 cm及单根拉杆轴向加载至1 200 kN,横向加载至5 cm,分5级加载
    3 双向预偏5 cm及单根拉杆轴向加载至1500 kN,横向加载至5 cm,分5级加载
    4 双向预偏5 cm及单根拉杆轴向加载至1 500 kN,横向初级加载至5 cm,之后每级加载1 cm至结构屈服
    下载: 导出CSV

    表  3  工况1各构件最大应力测点试验结果

    Table  3.   Test results of maximum stress measuring points of various components under condition 1

    构件 应力类型 不同横向偏位(cm)处的最大应力/MPa
    1 2 3 4 5
    锚板 实测值 174.8 180.0 185.2 188.0 190.8
    计算值 178.9 180.3 183.0 187.0 192.2
    肋板 实测值 174.3 174.8 175.2 177.3 179.3
    计算值 171.2 170.6 171.5 173.9 179.0
    拉杆 实测值 375.8 390.8 409.5 428.3 450.9
    计算值 375.8 392.6 410.3 429.7 451.3
    下载: 导出CSV

    表  4  工况2各构件最大应力测点试验结果

    Table  4.   Test results of maximum stress measuring points of various components under condition 2

    构件 应力类型 不同横向偏位(cm)处的最大应力/MPa
    1 2 3 4 5
    锚板 实测值 200.7 204.0 210.3 217.7 221.1
    计算值 217.9 221.9 227.2 234.0 242.6
    肋板 实测值 192.4 192.0 193.1 194.9 196.8
    计算值 205.6 205.1 206.0 208.4 212.8
    拉杆 实测值 447.6 455.4 463.6 470.7 473.8
    计算值 409.8 417.2 424.5 443.2 450.7
    下载: 导出CSV

    表  5  工况3各构件最大应力测点试验结果

    Table  5.   Test results of maximum stress measuring points of various components under condition 3

    构件 应力类型 不同横向偏位(cm)处的最大应力/MPa
    1 2 3 4 5
    锚板 实测值 253.3 261.5 270.7 278.6 286.8
    计算值 270.6 271.9 274.4 278.1 283.1
    肋板 实测值 252.0 253.6 254.9 257.7 260.5
    计算值 257.0 256.5 257.2 259.2 262.7
    拉杆 实测值 561.8 575.0 590.8 609.2 623.7
    计算值 561.2 578.9 595.8 613.7 632.8
    下载: 导出CSV

    表  6  工况4各构件最大应力测点试验结果

    Table  6.   Test results of maximum stress measuring points of various components under condition 4

    构件 应力类型 不同横向偏位(cm)处的最大应力/MPa
    6.0 7.0 8.0 9.0 10.0 11.0 12.0 12.8
    锚板 实测值 296.4 308.7 325.2 340.9 356.1 372.3 388.4 390.0
    计算值 289.2 296.6 305.8 316.4 329.3 338.0 351.6 366.0
    肋板 实测值 275.6 290.8 305.1 320.5 337.8 354.1 372.4 386.8
    计算值 268.6 277.2 287.9 299.7 314.0 324.2 340.3 357.5
    拉杆 实测值 639.5 659.4 668.2 672.1 678.4 687.6 695.3 704.8
    计算值 642.9 648.2 656.2 664.3 672.5 680.6 688.8 697.1
    下载: 导出CSV

    表  7  各工况下锚拉系统最大应力和偏位

    Table  7.   Maximum stresses and deviations of anchorage system under various conditions

    工况 单根杆轴向力/kN 最大横向偏位/cm 构件 最大Mises应力/MPa 设计安全储备/% 屈服安全储备/%
    1 1 000 5.0 锚板 190.8 35.3 51.1
    肋板 179.3 36.0 54.0
    拉杆 450.9 46.0
    2 1 200 5.0 锚板 221.1 25.1 43.3
    肋板 196.8 29.7 49.5
    拉杆 473.8 43.3
    3 1 500 5.0 锚板 286.8 2.8 26.5
    肋板 260.5 7.0 33.2
    拉杆 623.7 25.3
    4 1 500 6.0 锚板 296.4 24.0
    肋板 275.6 1.6 29.3
    拉杆 639.5 23.4
    12.8 锚板 390.0 0.0
    肋板 386.8 0.8
    拉杆 704.8 15.6
    下载: 导出CSV
  • [1] 陈越, 陈伟乐, 宋神友, 等. 深中通道沉管隧道主要建造技术[J]. 隧道建设(中英文), 2020, 40(4): 603-610. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202004025.htm

    CHEN Yue, CHEN Wei-le, SONG Shen-you, et al. Key construction technologies for immersed tunnel of Shenzhen-Zhongshan Link[J]. Tunnel Construction, 2020, 40(4): 603-610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202004025.htm
    [2] 袁勇, 禹海涛, 萧文浩, 等. 沉管隧道管节接头混凝土剪力键压剪破坏试验研究[J]. 工程力学, 2017, 34(3): 149-154, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703019.htm

    YUAN Yong, YU Hai-tao, XIAO Wen-hao, et al. Experimental failure analysis on concrete shear keys in immersion joint subjected to compression-shear loading[J]. Engineering Mechanics, 2017, 34(3): 149-154, 181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703019.htm
    [3] 程新俊, 景立平, 崔杰, 等. 沉管隧道管节接头剪切破坏试验[J]. 中国公路学报, 2020, 33(4): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202004010.htm

    CHENG Xin-jun, JING Li-ping, CUI Jie, et al. Experimental failure analysis on immersed tunnel joint subjected to shear loading[J]. China Journal of Highway and Transport, 2020, 33(4): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202004010.htm
    [4] 成益品, 陈伟乐, 宋神友, 等. 深中通道沉管安装测量塔法浮态标定与坐底标定精度对比试验[J]. 隧道建设(中英文), 2021, 41(8): 1399-1403. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202108019.htm

    CHENG Yi-pin, CHEN Wei-le, SONG Shen-you, et al. Calibration accuracy comparison between floating state of measuring tower and coordinate bottom for immersed-tube installation in Shenzhen-Zhongshan Link[J]. Tunnel Construction, 2021, 41(8): 1399-1403. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202108019.htm
    [5] 禹海涛, 萧文浩, 赵旭, 等. 沉管隧道柔性接头压缩性能研究[J]. 中国公路学报, 2019, 32(5): 115-122, 180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905012.htm

    YU Hai-tao, XIAO Wen-hao, ZHAO Xu, et al. Compression performance of flexible joints in immersed tunnels[J]. China Journal of Highway and Transport, 2019, 32(5): 115-122, 180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905012.htm
    [6] 张清华, 李乔. 锚箱式索梁锚固结构受力特性研究Ⅰ: 理论模型[J]. 土木工程学报, 2012, 45(7): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201209016.htm

    ZHANG Qing-hua, LI Qiao. Mechanical features of cable-girder anchorage for cable-stayed bridges with steel box girdersⅠ: theoretical model[J]. China Civil Engineering Journal, 2012, 45(7): 120-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201209016.htm
    [7] 孟俊苗, 刘永健, 王兴. 组合梁斜拉桥索梁锚固区桥面板斜向开裂机理与配筋设计方法[J]. 交通运输工程学报, 2022, 22(6): 114-129. doi: 10.19818/j.cnki.1671-1637.2022.06.007

    MENG Jun-miao, LIU Yong-jian, WANG Xing. Diagonal cracking mechanism and reinforcement design method of bridge decks in cable-girder anchorage zone of composite girder cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 114-129. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.06.007
    [8] 任伟平, 强士中, 李小珍, 等. 斜拉桥锚拉板式索梁锚固结构传力机理及疲劳可靠性研究[J]. 土木工程学报, 2006, 39(10): 68-73, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200610010.htm

    REN Wei-ping, QIANG Shi-zhong, LI Xiao-zhen, et al. Mechanical behavior and fatigue reliability of tensile anchor plate structure in the cable-beam anchorage zones of cable-stayed bridges[J]. China Civil Engineering Journal, 2006, 39(10): 68-73, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200610010.htm
    [9] 刘宝峰, 高建辉, 杨磊, 等. 黑瞎子岛乌苏大桥索梁锚固结构模型静力试验研究[J]. 桥梁建设, 2013, 43(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201306003.htm

    LIU Bao-feng, GAO Jian-hui, YANG Lei, et al. Test study of static force of cable-to-girder anchorage structure model of Wusu Bridge in Heixiazi Island[J]. Bridge Construction, 2013, 43(6): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201306003.htm
    [10] 卫星, 李小珍, 李俊, 等. 钢箱梁斜拉桥锚拉板式索梁锚固结构的试验研究[J]. 工程力学, 2007, 24(4): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200704023.htm

    WEI Xing, LI Xiao-zhen, LI Jun, et al. Experimental study on anchor-plate anchorage for cable-stayed bridges with steel box girder[J]. Engineering Mechanics, 2007, 24(4): 135-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200704023.htm
    [11] 陈彦江, 辛光涛, 李勇, 等. 锚拉板式索梁锚固区足尺模型承载性能试验研究[J]. 桥梁建设, 2014, 44(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403007.htm

    CHEN Yan-jiang, XIN Guang-tao, LI Yong, et al. Test study of bearing behavior of full-scale model for cable-to-girder anchorage zone of tensile anchor plate type[J]. Bridge Construction, 2014, 44(3): 38-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403007.htm
    [12] 周绪红, 张茜, 狄谨, 等. 对称荷载作用钢锚板式钢-混组合索塔锚固体系传力机理[J]. 中国公路学报, 2012, 25(6): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206013.htm

    ZHOU Xu-hong, ZHANG Qian, DI Jin, et al. Load-transfer mechanism of steel-concrete composite cable-pylon anchorage system with steel anchor slab under symmetrical load[J]. China Journal of Highway and Transport, 2012, 25(6): 60-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201206013.htm
    [13] NIE Jian-guo, ZHOU Meng, WANG Yu-hang, et al. Cable anchorage system modeling methods for self-anchored suspension bridges with steel box girders[J]. Journal of Bridge Engineering, 2014, 19(2): 172-185.
    [14] NIE Jian-guo, TAO Mu-xuan, FAN Jian-sheng. Research on cable anchorage systems for self-anchored suspension bridges with steel box girders[J]. Journal of Bridge Engineering, 2011, 16(5): 633-643.
    [15] 狄谨, 曾奎, 涂熙, 等. 鹅公岩轨道专用桥主缆锚固区模型试验研究[J]. 桥梁建设, 2018, 48(6): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201806012.htm

    DI Jin, ZENG Kui, TU Xi, et al. Model test study of main cable anchorage zone of Egongyan Rail Transit Special Use Bridge[J]. Bridge Construction, 2018, 48(6): 58-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201806012.htm
    [16] 沈锐利, 谢博. 钢-混凝土组合梁自锚式悬索桥主缆锚固区传力机制研究[J]. 建筑结构学报, 2017, 38(增1): 423-429. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1061.htm

    SHEN Rui-li, XIE Bo. Force transfer mechanism in main cable anchorage zone of composite girder self-anchored suspension bridge[J]. Journal of Building Structures, 2017, 38(S1): 423-429. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1061.htm
    [17] 闫磊, 韩恒, 贺拴海, 等. 深中通道沉管临时锚拉系统承载性能足尺模型试验[J]. 中国公路学报, 2022, 35(10): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210005.htm

    YAN Lei, HAN Heng, HE Shuan-hai, et al. Full-scale model test of bearing capacity of temporary anchorage system for immersed tube in Shenzhen-Zhongshan Link[J]. China Journal of Highway and Transport, 2022, 35(10): 47-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210005.htm
    [18] 李瀚源, 李兴高. 沉管隧道管节接头三维数值模拟分析[J]. 地下空间与工程学报, 2019, 15(增1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1020.htm

    LI Han-yuan, LI Xing-gao. 3-D numerical simulation analysis on element joint in immersed tube tunnels[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1020.htm
    [19] 赵天驰, 丁文其, 魏立新, 等. 考虑地基刚度不均匀影响的沉管隧道接头变形分析[J]. 现代隧道技术, 2018, 55(5): 97-105, 114. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805014.htm

    ZHAO Tian-chi, DING Wen-qi, WEI Li-xin, et al. Analysis on the deformation behavior of joints in immersed tube tunnels considering the non-uniformity of ground stiffness[J]. Modern Tunnelling Technology, 2018, 55(5): 97-105, 114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201805014.htm
    [20] 禹海涛, 袁勇, 刘洪洲, 等. 沉管隧道接头力学模型及刚度解析表达式[J]. 工程力学, 2014, 31(6): 145-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201406020.htm

    YU Hai-tao, YUAN Yong, LIU Hong-zhou, et al. Mechanical model and analytical solution for stiffness in the joints of an immersed-tube tunnel[J]. Engineering Mechanics, 2014, 31(6): 145-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201406020.htm
    [21] 禹海涛, 萧文浩, 袁勇, 等. 沉管隧道接头与管节本体刚度比试验[J]. 中国公路学报, 2016, 29(12): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201612020.htm

    YU Hai-tao, XIAO Wen-hao, YUAN Yong, et al. Experiment on stiffness ratio of immersion joint to immersed tunnel element[J]. China Journal of Highway and Transport, 2016, 29(12): 134-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201612020.htm
    [22] 冯海暴, 刘德进. 超大沉管隧道管节水下顶推精确调整受力运动规律分析[J]. 应用力学学报, 2019, 36(6): 1405-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201906024.htm

    FENG Hai-bao, LIU De-jin. Analysis of the law of the force and motion of the super large immersed tunnel elements during the underwater pushing and precise adjustment[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1405-1411. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201906024.htm
    [23] 周桓竹, 寇晓强, 王延宁. 潮汐作用下的沉管隧道竖向位移计算[J]. 岩土力学, 2021, 42(10): 2785-2794, 2807. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110018.htm

    ZHOU Huan-zhu, KOU Xiao-qiang, WANG Yan-ning. Vertical displacement calculation of immersed tube tunnel under tidal load[J]. Rock and Soil Mechanics, 2021, 42(10): 2785-2794, 2807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110018.htm
    [24] 刘鹏, 丁文其, 杨波. 沉管隧道接头刚度模型研究[J]. 岩土工程学报, 2013, 35(增2): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2023.htm

    LIU Peng, DING Wen-qi, YANG Bo. Model for stiffness of joints of immersed tube tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2023.htm
    [25] 李军军, 杨小军, 李芸, 等. 水流作用下的沉管平移控制模型与优化方法[J]. 交通运输工程学报, 2016, 16(2): 27-36. doi: 10.19818/j.cnki.1671-1637.2016.02.004

    LI Jun-jun, YANG Xiao-jun, LI Yun, et al. Translation control model and optimization method of immersed tube under action of water flow[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 27-36. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.004
    [26] 何杰, 高正荣, 辛文杰. 港珠澳大桥沉管隧道合拢口水动力条件数值模拟研究[J]. 工程科学与技术, 2019, 51(6): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201906009.htm

    HE Jie, GAO Zheng-rong, XIN Wen-jie. Numerical simulation of hydrodynamic conditions on closure gap of immersed tunnel in Hong Kong-Zhuhai-Macao Bridge[J]. Advanced Engineering Sciences, 2019, 51(6): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201906009.htm
    [27] 李斌, 高潮, 张嘉莹. 港珠澳大桥沉管隧道瞬时沉降规律分析[J]. 岩土工程学报, 2021, 43(增2): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S2064.htm

    LI Bin, GAO Chao, ZHANG Jia-ying. Instantaneous settlement of immersed tube tunnel of Hong Kong-Zhuhai-Macao Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 263-266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S2064.htm
    [28] 唐亮, 樊健生, 聂建国, 等. 角钢连接件力学性能及混凝土脱空对其影响研究[J]. 工程力学, 2020, 37(10): 45-55, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010005.htm

    TANG Liang, FAN Jian-sheng, NIE Jian-guo, et al. Experimental study on the mechanical performance of angle shear connectors with and without concrete gaps[J]. Engineering Mechanics, 2020, 37(10): 45-55, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202010005.htm
    [29] 严松宏, 高波, 潘昌实. 地震作用下沉管隧道接头力学性能分析[J]. 岩石力学与工程学报, 2003, 22(2): 286-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302026.htm

    YAN Song-hong, GAO Bo, PAN Chang-shi. Dynamic property analysis on joint for submerged tunnel under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 286-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302026.htm
    [30] 宋神友, 李永轩, 金文良, 等. 钢-混凝土组合沉管结构抗剪机理[J]. 同济大学学报(自然科学版), 2019, 47(10): 1421-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201910006.htm

    SONG Shen-you, LI Yong-xuan, JIN Wen-liang, et al. Shear mechanism of steel-concrete composite tunnel structure[J]. Journal of Tongji University (Natural Science), 2019, 47(10): 1421-1428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201910006.htm
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  97
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回