留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应变点的发动机性能退化预测

李耀华 张铖

李耀华, 张铖. 基于自适应变点的发动机性能退化预测[J]. 交通运输工程学报, 2023, 23(5): 143-151. doi: 10.19818/j.cnki.1671-1637.2023.05.009
引用本文: 李耀华, 张铖. 基于自适应变点的发动机性能退化预测[J]. 交通运输工程学报, 2023, 23(5): 143-151. doi: 10.19818/j.cnki.1671-1637.2023.05.009
LI Yao-hua, ZHANG Cheng. Prediction of engine performance degradation based on adaptive change points[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 143-151. doi: 10.19818/j.cnki.1671-1637.2023.05.009
Citation: LI Yao-hua, ZHANG Cheng. Prediction of engine performance degradation based on adaptive change points[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 143-151. doi: 10.19818/j.cnki.1671-1637.2023.05.009

基于自适应变点的发动机性能退化预测

doi: 10.19818/j.cnki.1671-1637.2023.05.009
基金项目: 

国家自然科学基金项目 U2033209

详细信息
    作者简介:

    李耀华(1974-),男,山西原平人,中国民航大学教授,工学博士,从事航空器持续适航与安全研究

  • 中图分类号: V235.13

Prediction of engine performance degradation based on adaptive change points

Funds: 

National Natural Science Foundation of China U2033209

More Information
  • 摘要: 为有效利用监控大数据准确识别民机发动机性能的状态并预测其性能退化过程,针对民机发动机故障数据偏少且其性能退化过程呈现多阶段退化特性,提出了一种考虑民机发动机性能参数阶段不确定退化特性的可靠性评估模型;通过动态自适应窗宽改进了基于贝叶斯信息准则(BIC)的变点检测模型,利用改进自适应窗宽的BIC识别了自适应变点;根据识别出的自适应变点分阶段建立了不确定Liu过程的分布函数模型,结合民机发动机性能退化过程首达阈值的数学性质进行了可靠性评估,并通过对比民机发动机性能退化样本数据验证了模型的准确性和优越性。分析结果表明:利用改进自适应窗宽的BIC变点检测模型识别民机发动机性能退化过程的变点后,采用变点描述分阶段退化过程的均方误差为5.8×10-28,在自适应窗宽具有不同变化规律的条件下,识别出的变点无明显变化,说明模型能够准确识别民机发动机性能退化过程的自适应变点,且具有较强的稳健性;利用阶段不确定Liu过程分析民机发动机性能参数的动态退化规律时,其平均评估误差比原Liu过程模型降低了约23.69%,得到的可靠性评估结果更加准确,且改进模型由于具有Lipschitz连续性,能够准确预测未来某段时间内民机发动机性能退化过程的可靠性水平。由此可见,建立的改进可靠性评估模型能够为实际工程中民机发动机的性能状态监控与健康管理应用提供理论方法。

     

  • 图  1  发动机排气温度裕度退化的滤波曲线

    Figure  1.  Filter curves for degradation of EGTM

    图  2  可靠性评估框架

    Figure  2.  Framework of reliability assessment

    图  3  统计量变化曲线

    Figure  3.  Change curves of statistics

    图  4  EGTM分布函数均值变化曲线

    Figure  4.  Change curves of means of EGTM distribution functions

    图  5  EGTM分布函数方差变化曲线

    Figure  5.  Change curves of variances of EGTM distribution functions

    图  6  模型可靠度变化曲线

    Figure  6.  Change curves of model reliabilities

    图  7  两种模型绝对误差对比曲线

    Figure  7.  Comparison curves of absolute errors of two models

  • [1] 潘刚, 尚朝轩, 梁玉英, 等. 考虑认知不确定的雷达功率放大系统可靠性评估[J]. 北京航空航天大学, 2016, 42(6): 1185-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201606013.htm

    PAN Gang, SHANG Chao-xuan, LIANG Yu-ying, et al. Reliability evaluation of radar power amplification system considering epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1185-1194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201606013.htm
    [2] LIU Bao-ding. Why is there a need for uncertainty theory[J]. Journal of Uncertain Systems, 2011, 6(1): 3-10.
    [3] 马小骏, 任淑红, 左洪福, 等. 基于LS-SVM算法和性能可靠性的航空发动机在翼寿命预测方法[J]. 交通运输工程学报, 2015, 15(3): 92-100. doi: 10.19818/j.cnki.1671-1637.2015.03.011

    MA Xiao-jun, REN Shu-hong, ZUO Hong-fu, et al. Prediction method of aero-engine life on wing based on LS-SVM algorithm and performance reliability[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 92-100. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.03.011
    [4] QIU Qing-an, CUI Li-rong. Reliability evaluation based on a dependent two-stage failure process with competing failures[J]. Applied Mathematical Modelling, 2018, 64: 699-712. doi: 10.1016/j.apm.2018.07.039
    [5] LIU Le, LI Xiao-yang, SUN Fu-qiang, et al. A general accelerated degradation model based on the Wiener process[J]. Materials, 2016, 9(12): 981. doi: 10.3390/ma9120981
    [6] LIU Bao-ding. Uncertainty distribution and independence of uncertain processes[J]. Fuzzy Optimization and Decision Making, 2014, 13(3): 259-271. doi: 10.1007/s10700-014-9181-5
    [7] LIU Bao-ding. Fuzzy process, hybrid process and uncertain process[J]. Journal of Uncertain System, 2008, 2(1): 3-16.
    [8] LIU Bao-ding. Some research problems in uncertainty theory[J]. Journal of Uncertain System, 2009, 3(1): 3-10.
    [9] GAO Jin-wu, YAO Kai, ZHOU Jian, et al. Reliability analysis of uncertain weighted k-out-of-n systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2663-2671. doi: 10.1109/TFUZZ.2018.2806365
    [10] ZHANG Qing-yang, KANG Rui, WEN Mei-lin. Belief reliability for uncertain random systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(6): 3605-3614. doi: 10.1109/TFUZZ.2018.2838560
    [11] ZHANG Qing-yang, ZENG Zhi-guo, ZIO E, et al. Probability box as a tool to model and control the effect of epistemic uncertainty in multiple dependent competing failure processes[J]. Applied Soft Computing, 2017, 56: 570-579. doi: 10.1016/j.asoc.2016.06.016
    [12] YAO Kai. First hitting time of uncertain random renewal reward process and its application in insurance risk process[J]. Soft Computing, 2019, 23(11): 3687-3696. doi: 10.1007/s00500-018-3024-1
    [13] ZHANG Qing-yang, KANG Rui, WEN Mei-lin. A new method of level-2 uncertainty analysis in risk assessment based on uncertainty theory[J]. Soft Computing, 2018, 22(17): 5867-5877. doi: 10.1007/s00500-018-3337-0
    [14] YAO Kai, LIU Bao-ding. Parameter estimation in uncertain differential equations[J]. Fuzzy Optimization and Decision Making, 2020, 19(1): 1-12. doi: 10.1007/s10700-019-09310-y
    [15] YANG Xiang-feng, LIU Bao-ding. Uncertain time series analysis with imprecise observations[J]. Fuzzy Optimization and Decision Making, 2019, 18(3): 263-278. doi: 10.1007/s10700-018-9298-z
    [16] CAO Xue-rui, HU Lin-min, LI Zhen-zhen. Reliability analysis of discrete time series-parallel systems with uncertain parameters[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 2657-2668. doi: 10.1007/s12652-018-0952-7
    [17] LIU Zhao-cai, HU Lin-min, LIU Si-jia, et al. Reliability analysis of general systems with bi-uncertain variables[J]. Soft Computing, 2020, 24: 6975-6986. doi: 10.1007/s00500-019-04331-6
    [18] LI Xiao-yang, WU Ji-peng, LIU Le, et al. Modeling accelerated degradation data based on the uncertain process[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(8): 1532-1542. doi: 10.1109/TFUZZ.2018.2883016
    [19] LIU Bao-liang, ZHANG Zhi-qiang, WEN Yan-qing. Reliability analysis for devices subject to competing failure processes based on chance theory[J]. Applied Mathematical Modelling, 2019, 75: 398-413. doi: 10.1016/j.apm.2019.05.036
    [20] 刘宝亮, 张志强, 温艳清, 等. 具有变点的不确定竞争失效退化系统的可靠性建模[J]. 北京航空航天大学学报, 2020, 46(11): 2039-2044. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202011005.htm

    LIU Bao-liang, ZHANG Zhi-qiang, WEN Yan-qing, et al. Reliability modeling of uncertain competitive failure degradation systems with change points[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2039-2044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202011005.htm
    [21] 车畅畅, 王华伟, 倪晓梅, 等. 基于多尺度排列熵和长短时记忆神经网络的航空发动机剩余寿命预测[J]. 交通运输工程学报, 2019, 19(5): 106-115. doi: 10.19818/j.cnki.1671-1637.2019.05.011

    CHE Chang-chang, WANG Hua-wei, NI Xiao-mei, et al. Residual life prediction of aeroengine based on multi-scale permutation entropy and LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 106-115. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.05.011
    [22] KORKAS K K, FRYZLEWICZ P. Multiple change-point detection for non-stationary time series using wild binary segmentation[J]. Statistica Sinica, 2017, 27(1): 287-311.
    [23] FRICK K, MUNK A, SIELING H. Multiscale change point inference[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2014, 76(3): 495-580. doi: 10.1111/rssb.12047
    [24] MESSER M, ALBERT S, SCHNEIDER G. The multiple filter test for change point detection in time series[J]. Metrika, 2018, 81(6): 589-607. doi: 10.1007/s00184-018-0672-1
    [25] MESSER M, KIRCHNER M, SCHIEMANN J, et al. A multiple filter test for the detection of rate changes in renewal processes with varying variance[J]. The Annals of Applied Statistics, 2014, 8(4): 2027-2067.
    [26] 夏正敏. 基于分形的网络流量分析及异常检测技术研究[D]. 上海: 上海交通大学, 2012.

    XIA Zheng-min. Research on network traffic analysis and anomaly detection based on fractal theory[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
    [27] LIU Bao-ding. Extreme value theorems of uncertain process with application to insurance risk model[J]. Soft Computing, 2013, 17: 549-556. doi: 10.1007/s00500-012-0930-5
    [28] ZHANG Chong, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318.
    [29] KHANH L S, MITRA F, ANNE B, et al. Remaining useful life estimation based on stochastic deterioration models: a comparative study[J]. Reliability Engineering and System Safety, 2013, 112(5): 165-175.
    [30] LI Shu-min, CHEN Yin. Reliably evaluation method considering FM dependency via uncertainty theory[C]//IEEE. 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). New York: IEEE, 2020: 91-96.
  • 加载中
图(7)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  59
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回