留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多港口区域泊位资源的最优配置与分配

郑建风 赵煜星 刘欣桐 郭倪楠

郑建风, 赵煜星, 刘欣桐, 郭倪楠. 多港口区域泊位资源的最优配置与分配[J]. 交通运输工程学报, 2023, 23(5): 183-191. doi: 10.19818/j.cnki.1671-1637.2023.05.012
引用本文: 郑建风, 赵煜星, 刘欣桐, 郭倪楠. 多港口区域泊位资源的最优配置与分配[J]. 交通运输工程学报, 2023, 23(5): 183-191. doi: 10.19818/j.cnki.1671-1637.2023.05.012
ZHENG Jian-feng, ZHAO Yu-xing, LIU Xin-tong, GUO Ni-nan. Optimal configuration and allocation of berth resources in multi-port regions[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 183-191. doi: 10.19818/j.cnki.1671-1637.2023.05.012
Citation: ZHENG Jian-feng, ZHAO Yu-xing, LIU Xin-tong, GUO Ni-nan. Optimal configuration and allocation of berth resources in multi-port regions[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 183-191. doi: 10.19818/j.cnki.1671-1637.2023.05.012

多港口区域泊位资源的最优配置与分配

doi: 10.19818/j.cnki.1671-1637.2023.05.012
基金项目: 

国家自然科学基金项目 72371046

国家自然科学基金项目 72031005

国家自然科学基金项目 71871036

详细信息
    作者简介:

    郑建风(1981-),男,浙江金华人,大连海事大学教授,理学博士,从事港航运输规划与管理研究

  • 中图分类号: U691.3

Optimal configuration and allocation of berth resources in multi-port regions

Funds: 

National Natural Science Foundation of China 72371046

National Natural Science Foundation of China 72031005

National Natural Science Foundation of China 71871036

More Information
  • 摘要: 在区域港口发展一体化的背景下,通过调整不同班轮公司的船舶挂靠港口,研究了多港口区域泊位资源的配置与分配问题;为提高泊位利用率,将不同班轮公司组合形成稳定班轮集群,并将多港口区域泊位资源与不同班轮集群之间进行最优匹配,以泊位总数最少和船舶挂靠港口调整最小为目标建立集划分模型,设计了基于排队论和合作博弈理论的三阶段优化方法;以珠江三角洲区域的3个港口(香港港、盐田港和蛇口港)和4个班轮公司的船舶挂靠该区域多港口为例进行算例分析。数值分析结果表明:三阶段优化方法可以使这4个班轮公司的船舶总平均排队长度由23.569 1艘减少至22.930 2艘,即多港口区域的泊位资源整合可以有效缓解港口拥挤和船舶排队;3个港口服务4个班轮公司船舶需配置的泊位数由31减少至27,说明多港口区域的泊位资源的合理配置与分配,不仅可以提高泊位资源利用率,也可以减少不同港口的泊位资源的重复建设;从泊位服务船舶数量的角度,服务不同的班轮集群的船舶对港口的吸引力不同,说明港口可以选择合适的班轮公司作为服务对象来提高泊位运营效率。

     

  • 图  1  珠三角地区港口的内陆腹地

    Figure  1.  Inland hinterland of ports in Pearl River Delta

    图  2  泊位资源配置与分配过程

    Figure  2.  Configuration and allocation of berth resources

    图  3  不同λμ下的最优泊位数

    Figure  3.  Optimal berth numbers for different λ and μ

    图  4  z*λ的关系

    Figure  4.  Relationship between z* and λ

    图  5  港口泊位数对目标函数值的影响

    Figure  5.  Impact of port berth number on objective function value

    表  1  COSCO和MSK组成的班轮集群在港时间分布检验

    Table  1.   Port time distribution test of liner ship clusters composed of COSCO and MSK

    h dh ph nph (dhnph)2/nph
    0~4 1 0.016 2 1.701 0 0.288 9
    4~8 14 0.109 8 11.529 0 0.529 6
    8~12 21 0.194 6 20.433 0 0.015 7
    12~16 25 0.207 6 21.798 0 0.470 4
    16~20 17 0.171 5 18.007 5 0.056 4
    20~24 7 0.121 5 12.757 5 2.598 4
    24~28 7 0.077 8 8.169 0 0.167 3
    28~32 2 0.046 3 4.861 5 1.684 3
    32~36 6 0.026 1 2.740 5 3.876 8
    36~40 2 0.014 1 1.480 5
    40~44 2 0.007 3 0.766 5 2.121 4
    44~48 1 0.003 7 0.388 5
    下载: 导出CSV

    表  2  不同班轮集群的泊松分布和爱尔朗分布的参数

    Table  2.   Parameters of Poisson distribution and Erlang distribution of different liner ship clusters

    班轮集群 λ k μ
    {HMM,ONE,MSK,COSCO} 30.57 4 1.409
    {HMM,ONE,MSK} 25.57 4 1.405
    {ONE,MSK,COSCO} 24.43 3 1.467
    {HMM,MSK,COSCO} 21.14 4 1.360
    {HMM,ONE,COSCO} 20.57 5 1.398
    {HMM,ONE} 15.57 4 1.391
    {MSK,COSCO} 15.00 4 1.428
    {HMM,MSK} 16.14 4 1.342
    {ONE,COSCO} 14.43 5 1.492
    {HMM,COSCO} 11.14 5 1.301
    {ONE,MSK} 19.43 4 1.479
    {HMM} 6.14 3 1.204
    {COSCO} 5.00 3 1.424
    {ONE} 9.43 6 1.533
    {MSK} 10.00 4 1.431
    下载: 导出CSV

    表  3  最优泊位数结果

    Table  3.   Results of optimal berth number

    班轮集群 z*/个 π(z*)/艘
    {HMM, ONE, MSK, COSCO} 26 22.590 1
    {HMM, ONE, MSK} 22 19.100 1
    {ONE, MSK, COSCO} 21 17.241 5
    {HMM, MSK, COSCO} 19 16.415 7
    {HMM, ONE, COSCO} 18 15.574 3
    {HMM, ONE} 15 12.024 5
    {MSK, COSCO} 14 10.942 0
    {HMM, MSK} 14 12.844 2
    {ONE, COSCO} 13 10.086 0
    {HMM, COSCO} 11 9.282 2
    {ONE, MSK} 17 13.634 6
    {COSCO} 5 4.111 0
    {HMM} 7 5.723 1
    {ONE} 9 6.428 0
    {MSK} 10 7.307 0
    下载: 导出CSV

    表  4  成本分摊结果

    Table  4.   Results of cost allocation

    班轮集群 每家公司每天分摊的成本/105
    MSK COSCO HMM ONE
    {HMM, ONE, MSK, COSCO} 6.044 3.246 4.604 5.370
    {HMM, ONE, MSK} 6.138 4.591 5.567
    {ONE, MSK, COSCO} 6.102 3.232 5.364
    {HMM, MSK, COSCO} 5.970 3.442 4.598
    {HMM, ONE, COSCO} 3.339 4.598 5.296
    {HMM, ONE} 4.641 5.234
    {MSK, COSCO} 6.027 3.308
    {MSK, HMM} 5.807 4.464
    {ONE, COSCO} 3.319 5.289
    {HMM, COSCO} 3.279 4.655
    {ONE, MSK} 6.189 5.440
    不合作 6.237 3.518 4.894 5.488
    下载: 导出CSV

    表  5  班轮集群稳定性

    Table  5.   Liner ship clusters stability

    案例 班轮集群 每家公司每天分摊的成本/105
    MSK COSCO HMM ONE
    1 2家班轮公司 {ONE,MSK} 6.189 5.440
    {ONE,COSCO} 3.319 5.289
    {MSK,COSCO} 6.027 3.308
    3家班轮公司 {ONE,MSK,COSCO} 6.102 3.232 5.364
    不参与合作 6.237 3.518 4.894 5.488
    2 2家班轮公司 {HMM,ONE} 4.641 5.234
    {HMM,MSK} 5.807 4.464
    {ONE,MSK} 6.189 5.440
    3家班轮公司 {HMM,ONE,MSK} 6.138 4.591 5.567
    不参与合作 6.237 3.518 4.894 5.488
    下载: 导出CSV
  • [1] GUI Dong-ping, WANG Hai-yan, YU Meng. Risk assessment of port congestion risk during the COVID-19 pandemic[J]. Journal of Marine Science and Engineering, 2022, 10(2): 150. doi: 10.3390/jmse10020150
    [2] 王伟, 纪翌佳, 金凤君. 基于动态空间面板模型的中国港口竞争与合作关系研究[J]. 地理研究, 2022, 41(3): 616-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202203002.htm

    WANG Wei, JI Yi-jia, JIN Feng-jun. The competition and cooperation relationship of Chinese Ports based on dynamic spatial panel model[J]. Geographical Research, 2022, 41(3): 616-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202203002.htm
    [3] 范志强. 连续泊位分配问题研究: 模型优化与计算分析[J]. 工业工程与管理, 2016, 21(3): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201603011.htm

    FAN Zhi-qiang. Research on continuous berth allocation problem: model comparison and computational analysis[J]. Industrial Engineering and Management, 2016, 21(3): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201603011.htm
    [4] BARBOSA F, BERBERT RAMPAZZO P C, YAMAKAMI A, et al. The use of frontier techniques to identify efficient solutions for the berth allocation problem solved with a hybrid evolutionary algorithm[J]. Computers and Operations Research, 2019, 107: 43-60. doi: 10.1016/j.cor.2019.01.017
    [5] URSAVAS E, ZHU S X. Optimal policies for the berth allocation problem under stochastic nature[J]. European Journal of Operational Research, 2016, 255(2): 380-387. doi: 10.1016/j.ejor.2016.04.029
    [6] LALLA-RUIZ E, EXPÓSITO-IZQUIERDO C, MELIÁN-BATISTA B, et al. A set-partitioning-based model for the berth allocation problem under time-dependent limitations[J]. European Journal of Operational Research, 2016, 250(3): 1001-1012. doi: 10.1016/j.ejor.2015.10.021
    [7] XIANG Xi, LIU Chang-chun, MIAO Li-xin. A bi-objective robust model for berth allocation scheduling under uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 106: 294-319. doi: 10.1016/j.tre.2017.07.006
    [8] XU Ya, CHEN Qiu-shuang, QUAN Xiong-wen. Robust berth scheduling with uncertain vessel delay and handling time[J]. Annals of Operations Research, 2012, 192(1): 123-140. doi: 10.1007/s10479-010-0820-0
    [9] SCHEPLER X, BALEV S, MICHEL S, et al. Global planning in a multi-terminal and multi-modal maritime container port[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 100: 38-62. doi: 10.1016/j.tre.2016.12.002
    [10] IMAI A, NISHIMURA E, PAPADIMITRIOU S. The dynamic berth allocation problem for a container port[J]. Transportation Research Part B: Methodological, 2001, 35(4): 401-417. doi: 10.1016/S0191-2615(99)00057-0
    [11] CORRECHER J F, ALVAREZ-VALDES R, TAMARIT J M. New exact methods for the time-invariant berth allocation and quay crane assignment problem[J]. European Journal of Operational Research, 2019, 275(1): 80-92. doi: 10.1016/j.ejor.2018.11.007
    [12] ZHENG Jian-feng, YANG Ling-xiao, HAN Wen-cheng, et al. Berth assignment for liner carrier clusters under a cooperative environment[J]. Computers and Operations Research, 2021, 136: 105486. doi: 10.1016/j.cor.2021.105486
    [13] ILATI G, SHEIKHOLESLAMI A, HASSANNAYEBI E. A simulation-based optimization approach for integrated port resource allocation problem[J]. PROMET—Traffic and Transportation, 2014, 26(3): 243-255. doi: 10.7307/ptt.v26i3.1337
    [14] LEGATO P, MAZZA R M, GULLÌ D. Integrating tactical and operational berth allocation decisions via simulation-optimization[J]. Computers and Industrial Engineering, 2014, 78: 84-94. doi: 10.1016/j.cie.2014.10.003
    [15] SAEED N, LARSEN O. Application of queuing methodology to analyze congestion: a case study of the Manila International Container Terminal, Philippines[J]. Case Studies on Transport Policy, 2016, 4(2): 143-149. doi: 10.1016/j.cstp.2016.02.001
    [16] EL-NAGGAR M. Application of queuing theory to the container terminal at Alexandria seaport[J]. Journal of Soil Science and Environmental Management, 2010, 1(4): 77-85.
    [17] DRAGOVI AC'G B, PARK N K, RADMILOVI AC'G Z. Ship-berth link performance evaluation: simulation and analytical approaches[J]. Maritime Policy and Management, 2006, 33(3): 281-299. doi: 10.1080/03088830600783277
    [18] KOZAN E. Analysis of the economic effects of alternative investment decisions for seaport systems[J]. Transportation Planning and Technology, 1994, 18(3): 239-248. doi: 10.1080/03081069408717546
    [19] SEN P. Optimal priority assignment in queues: application to marine congestion problems[J]. Maritime Policy and Management, 1980, 7(3): 175-184. doi: 10.1080/03088838000000019
    [20] EDMOND E D, MAGGS R P. How useful are queue models in port investment decisions for container berths?[J]. Journal of the Operational Research Society, 1978, 29(8): 741-750. doi: 10.1057/jors.1978.162
    [21] 张恒, 陈秋双. 考虑船舶废气排放的港口群协同泊位分配研究[J]. 交通运输系统工程与信息, 2014, 14(4): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201404015.htm

    ZHANG Heng, CHEN Qiu-shuang. Coordinated berth allocation for port group considering vessel emissions[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(4): 99-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201404015.htm
    [22] 徐亚, 杜玉泉, 龙磊. 支持多码头协调运作的泊位调度模型和算法[J]. 系统工程, 2015, 33(1): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201501019.htm

    XU Ya, DU Yu-quan, LONG Lei. Berth scheduling model and algorithm for coordinated operation of multiple container terminals in a port[J]. Systems Engineering, 2015, 33(1): 128-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201501019.htm
    [23] VENTURINI G, IRIS Ç, KONTOVAS C A, et al. The multi- port berth allocation problem with speed optimization and emission considerations[J]. Transportation Research Part D: Transport and Environment, 2017, 54: 142-159. doi: 10.1016/j.trd.2017.05.002
    [24] 毕娅, 李文锋. 集装箱港口集群下多港口多泊位联合调度方法[J]. 计算机应用, 2012, 32(2): 448-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201202038.htm

    BI Ya, LI Wen-feng. Multi-port and multi-berth integrated scheduling based on container port cluster[J]. Journal of Computer Applications, 2012, 32(2): 448-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201202038.htm
    [25] GUO Li-ming, ZHENG Jian-feng, DU Hao-ming, et al. The berth assignment and allocation problem considering cooperative liner carriers[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 164: 102793. doi: 10.1016/j.tre.2022.102793
    [26] 梅益群, 韩晓龙. 考虑泊位偏好和岸桥移动的泊位岸桥联合调度[J]. 计算机工程与应用, 2022, 58(6): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202206024.htm

    MEI Yi-qun, HAN Xiao-long. Joint scheduling of berths and quay cranes considering berth preference and quay crane movement[J]. Computer Engineering and Applications, 2022, 58(6): 241-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202206024.htm
    [27] 焦小刚, 郑斐峰, 徐寅峰, 等. 考虑泊位疏浚的连续型泊位和动态岸桥联合调度[J]. 运筹与管理, 2020, 29(2): 47-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202002007.htm

    JIAO Xiao-gang, ZHENG Fei-feng, XU Yin-feng, et al. Integrated continuous berth allocation and time-variant quay crane assignment under berth dredging in container terminal[J]. Operations Research and Management Science, 2020, 29(2): 47-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202002007.htm
    [28] KIMURA T. Approximations for multi-server queues: system interpolations[J]. Queueing Systems, 1994, 17(3): 347-382.
    [29] 张一诺. 港口通用泊位最佳数量的计算方法[J]. 系统工程理论与实践, 1983(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL198301009.htm

    ZHANG Yi-nuo. Calculation method of optimal number of port general berths[J]. System Engineering Theory and Practice, 1983(1): 35-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL198301009.htm
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  100
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回