留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火灾爆发时地铁站乘客疏散多目标路径优化方法

杨晓霞 张蕊 李永行 曲大义

杨晓霞, 张蕊, 李永行, 曲大义. 火灾爆发时地铁站乘客疏散多目标路径优化方法[J]. 交通运输工程学报, 2023, 23(5): 192-209. doi: 10.19818/j.cnki.1671-1637.2023.05.013
引用本文: 杨晓霞, 张蕊, 李永行, 曲大义. 火灾爆发时地铁站乘客疏散多目标路径优化方法[J]. 交通运输工程学报, 2023, 23(5): 192-209. doi: 10.19818/j.cnki.1671-1637.2023.05.013
YANG Xiao-xia, ZHANG Rui, LI Yong-xing, QU Da-yi. A multi-objective route optimization method for passenger evacuations at subway stations during a fire outbreak[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 192-209. doi: 10.19818/j.cnki.1671-1637.2023.05.013
Citation: YANG Xiao-xia, ZHANG Rui, LI Yong-xing, QU Da-yi. A multi-objective route optimization method for passenger evacuations at subway stations during a fire outbreak[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 192-209. doi: 10.19818/j.cnki.1671-1637.2023.05.013

火灾爆发时地铁站乘客疏散多目标路径优化方法

doi: 10.19818/j.cnki.1671-1637.2023.05.013
基金项目: 

国家自然科学基金项目 62373209

国家自然科学基金项目 62003182

国家自然科学基金项目 52272311

详细信息
    作者简介:

    杨晓霞(1988-), 女, 山东烟台人, 青岛理工大学副教授, 工学博士, 从事智能交通研究

    通讯作者:

    曲大义(1973-), 男, 山东青岛人, 青岛理工大学教授, 工学博士

  • 中图分类号: U231.92

A multi-objective route optimization method for passenger evacuations at subway stations during a fire outbreak

Funds: 

National Natural Science Foundation of China 62373209

National Natural Science Foundation of China 62003182

National Natural Science Foundation of China 52272311

More Information
  • 摘要: 建立了一种地铁站乘客疏散网络,分析了网络节点的度以辨识关键节点,提出了节点失效后的修正走行疏散网络;设计了基于支持向量回归算法的闸机、楼梯/扶梯节点处乘客通行时间预测模型,分析了模型的预测性能,得到了乘客数量与通行时间的定量关系;建立了包括节点和路段通行时间的总疏散时间、总路段风险和总拥挤成本3个目标函数,构建了一种火灾爆发时地铁站乘客疏散多目标路径优化模型,提出了基于遗传算法的优化模型求解方法;模拟了火灾爆发时地铁站乘客的疏散运动,分析了路径优化模型帕累托解下的疏散效率,评估了路径优化策略的优化程度;设计了乘客动态引导微信小程序,为疏散路径推荐信息的及时发布提供了一种可能方案。研究结果表明:验证集中节点处乘客通行时间预测模型的平均绝对误差低至0.000 375,稳健指标值可高达0.999 334,说明预测数据与真实数据吻合程度高;闸机处实际采集数据与仿真数据的平均相对误差为4.9%,正态性检验、方差齐性检验和独立样本检验的显著值都大于0.05,验证了PathFinder软件可较为真实地模拟乘客运动;与正常疏散无优化策略相比,路径优化模型3组帕累托解下的优化程度分别为16.7%、15.9%、18.0%,因此,根据具体疏散场景、危险系数、服务质量要求等指标可选用相应的疏散优化策略。

     

  • 图  1  火灾下某地铁站修正走行疏散网络

    Figure  1.  Revised walking evacuation network of a subway station under fire

    图  2  关键节点处训练集和验证集预测结果对比

    Figure  2.  Comparison of prediction results of training set and test set at some key nodes

    图  3  关键节点处不同乘客数量的通行时间拟合曲线

    Figure  3.  Fitting curves of travel time with different numbers of passenger at some key nodes

    图  4  两处进站闸机仿真值和实际值对比

    Figure  4.  Comparison between simulation results and actual results at two entrance gates

    图  5  基于PyroSim软件搭建的青岛某地铁站模型

    Figure  5.  A subway station model in Qingdao based on PyroSim software

    图  6  不同时刻地铁站内温度快照

    Figure  6.  Snapshots of temperature in subway station at different times

    图  7  不同时刻地铁站内CO浓度快照

    Figure  7.  Snapshots of CO concentration in subway station at different times

    图  8  不同时刻地铁站内可见度快照

    Figure  8.  Snapshots of visibility in subway station at different times

    图  9  关键位置处温度变化曲线

    Figure  9.  Change curves of temperature at key positions

    图  10  关键位置处CO浓度变化曲线

    Figure  10.  Change curves of CO concentration at key positions

    图  11  关键位置处可见度变化曲线

    Figure  11.  Change curves of visibility at key positions

    图  12  不同时刻地铁站乘客疏散仿真快照

    Figure  12.  Simulation snapshots of passenger evacuation in subway station at different times

    图  13  Steering模式下站台乘客疏散过程的热力图

    Figure  13.  Thermal diagrams of passenger evacuation at platform under Steering mode

    图  14  总疏散时间对比

    Figure  14.  Comparison of total evacuation times

    图  15  站台剩余乘客人数随疏散时间的变化曲线

    Figure  15.  Variation curves of passenger remaining number on platform with evacuation time

    图  16  乘客拥挤成本对比

    Figure  16.  Comparison of passenger congestion costs

    图  17  乘客路段风险值对比

    Figure  17.  Comparison of passenger path risk values

    图  18  疏散结果对比

    Figure  18.  Comparison of evacuation results

    图  19  帕累托解的优化程度

    Figure  19.  Improvement degree of Pareto solutions

    图  20  乘客动态引导微信小程序

    Figure  20.  Wechat applet for dynamic guidance of passengers

    表  1  部分关键节点的度的值

    Table  1.   Values of some key nodes' degrees

    节点 1~6 7~12 19~25 26~32
    7 7 13 7
    下载: 导出CSV

    表  2  乘客通行时间预测模型结果

    Table  2.   Prediction model results of passenger travel time

    目标 训练集 验证集
    MAE R2 MAE R2
    1 0.000 984 0.996 493 0.000 832 0.997 389
    2 0.000 428 0.998 752 0.000 379 0.999 030
    3 0.000 701 0.997 730 0.000 687 0.997 999
    4 0.001 097 0.996 323 0.002 379 0.995 981
    5 0.000 386 0.998 876 0.000 375 0.999 334
    6 0.001 559 0.995 104 0.001 773 0.994 479
    7 0.000 898 0.997 269 0.000 679 0.997 171
    下载: 导出CSV

    表  3  95%置信区间下回归模型的显著性检验结果

    Table  3.   Significance test results of regression models under 95% confidence level

    通行时间模型公式 R2 方差分析
    F p
    T1 =-9.065e-6q2+0.137 6q+14.19 0.997 7 23 083.932 0.00
    T2=2.279e-5q2+0.339 7q+16.41 0.999 1 56 929.787 0.00
    T3=0.184 8q+36.75 0.997 9 50 426.833 0.00
    T4=3.375e-6q2+0.136 2q+35.76 0.997 1 17 645.697 0.00
    T5=-1.438e-5q2+0.336 9q+33.43 0.999 4 82 133.159 0.00
    T6=-4.153e-5q2+0.190 9q+ 8.383 0.996 2 13 729.375 0.00
    T7=-4.275e-6q2+0.062 6q+7.482 0.995 5 11 246.185 0.00
    下载: 导出CSV

    表  4  95%置信水平下实际值与仿真值的正态性检验结果

    Table  4.   Normality test results of actual and simulation values under 95% confidence level

    进站闸机 统计值 F 自由度 显著性
    1 实际值 0.793 5 0.071
    仿真值 0.826 5 0.130
    2 实际值 0.978 5 0.921
    仿真值 0.984 5 0.953
    下载: 导出CSV

    表  5  95%置信水平下实际值与仿真值的方差齐性检验结果

    Table  5.   Homogeneity test results of variance of actual and simulation values under 95% confidence level

    进站闸机 平方和 自由度 均方 F 显著性
    1 0.9 1 0.9 0.014 0.910
    2 0.9 1 0.9 0.008 0.932
    下载: 导出CSV

    表  6  95%置信水平下实际值和仿真值的T-独立样本检验结果

    Table  6.   T-independent sample test results of actual and simulation values under 95% confidence level

    进站闸机 假设 T 自由度 显著性(双尾) 平均值差值 标准误差平均值 95%置信区间
    下限 上限
    1 假定等方差 0.117 8 0.910 0.6 5.117 -11.119 12.399
    2 假定等方差 -0.088 8 0.932 -0.6 6.812 -16.308 15.108
    下载: 导出CSV

    表  7  优化前后的疏散结果对比

    Table  7.   Comparison of evacuation results before and after optimization

    帕累托解 优化前 优化后 I1/% I2/% I3/% I/%
    疏散时间/s 路段风险 拥挤成本 疏散时间/s 路段风险 拥挤成本
    1 232 610 7 639 225 437 3 786 0.6 16.9 32.5 16.7
    2 232 610 7 639 235 433 4 192 -0.3 17.1 30.8 15.9
    3 232 610 7 639 218 450 2 770 1.2 16.4 36.5 18.0
    下载: 导出CSV
  • [1] 中国城市轨道交通协会. 城市轨道交通2021年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2021.

    China Association of Metros. 2021 Statistical and analysis report on urban rail transit[R]. Beijing: China Association of Metros, 2021. (in Chinese)
    [2] YANG X X, ZHANG R, LI Y X, et al. Passenger evacuation path planning in subway station under multiple fires based on multiobjective robust optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21915-21931. doi: 10.1109/TITS.2022.3190291
    [3] YU H, WANG Y M, QIU P Y, et al. Analysis of natural and man-made accidents happened in subway stations and trains: based on statistics of accident cases[C]//EDP Sciences. 2018 International Conference on Functional Materials and Chemical Engineering. Paris: EDP Sciences, 2019: 01031.
    [4] 陈阳光. 基于BIM的地铁车站火灾疏散研究[D]. 成都: 西南交通大学, 2023.

    CHEN Yang-guang. Research on fire evacuation of subway station based on BIM[D]. Chengdu: Southwest Jiaotong University, 2023. (in Chinese)
    [5] 王胜闯. 突发火灾下地铁站内人群疏散模型与仿真研究[D]. 沈阳: 沈阳大学, 2022.

    WANG Sheng-chuang. Study on crowd evacuation model and simulation in subway station under sudden fire[D]. Shenyang: Shenyang University, 2022. (in Chinese)
    [6] 黄昕, 靳健, 林作忠, 等. 基于A*算法的深部地下空间火灾疏散路径动态规划[J]. 北京工业大学学报, 2021, 47(7): 702-709. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107005.htm

    HUANG Xin, JIN Jian, LIN Zuo-zhong, et al. Dynamic evacuation path planning for fire disaster of deep underground space based on A* algorithm[J]. Journal of Beijing University of Technology, 2021, 47(7): 702-709. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107005.htm
    [7] CHOI M, CHI S. Optimal route selection model for fire evacuations based on hazard prediction data[J]. Simulation Modelling Practice and Theory, 2019, 94: 321-333. doi: 10.1016/j.simpat.2019.04.002
    [8] 陈一洲, 尹浩东, 孙旋, 等. 基于实时毒气影响的人群疏散路径优化研究[J]. 安全与环境学报, 2018, 18(6): 2316-2321. doi: 10.13637/j.issn.1009-6094.2018.06.049

    CHEN Yi-zhou, YIN Hao-dong, SUN Xuan, et al. Optimalization for the crowd masses evacuation route based on the study of the impact of real-time gas leakage[J]. Journal of Safety and Environment, 2018, 18(6): 2316-2321. (in Chinese) doi: 10.13637/j.issn.1009-6094.2018.06.049
    [9] SHEN Yang, WANG Qing-song, YAN Wei-gang, et al. An evacuation model coupling with toxic effect for chemical industrial park[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 258-265. doi: 10.1016/j.jlp.2015.01.002
    [10] AZADEH A, FARROKHI-ASL H. The close-open mixed multi depot vehicle routing problem considering internal and external fleet of vehicles[J]. Transportation Letters—The International Journal of Transportation Research, 2017, 11(2): 78-92.
    [11] 姜学鹏, 张帆, 陈欣格. 地铁隧道火灾人员疏散可靠度研究[J]. 消防科学与技术, 2020, 39(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XFKJ202001003.htm

    JIANG Xue-peng, ZHANG Fan, CHEN Xin-ge. Reliability research of human evacuation in subway tunnel fire[J]. Fire Science and Technology, 2020, 39(1): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XFKJ202001003.htm
    [12] YANG X X, YANG Y, QU D Y, et al. Multi-objective optimization of evacuation route for heterogeneous passengers in the metro station considering node efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, DOI: 10.1109/TITS.2023.3292912.
    [13] LI X L, WANG H, YI S W, et al. Disaster-and-evacuation-aware backup datacenter placement based on multi-objective optimization[J]. IEEE Access, 2019, 7: 48196-48208. doi: 10.1109/ACCESS.2019.2909084
    [14] 刘恒旭. 基于蚁群算法的地铁站火灾多目标疏散路径优化研究[D]. 西安: 西安建筑科技大学, 2018.

    LIU Heng-xu. Optimization of multi-target evacuation paths for subway stations based on ant colony algorithm[D]. Xi'an: Xi'an University of Architecture and Technology, 2018. (in Chinese)
    [15] HOSSEINI O, MAGHREBI M, MAGHREBI M F. Determining optimum staged-evacuation schedule considering total evacuation time, congestion severity and fire threats[J]. Safety Science, 2021, 139: 105211. doi: 10.1016/j.ssci.2021.105211
    [16] 种法雯. 大型公共建筑室内火灾应急疏散路径仿真及优化研究[D]. 马鞍山: 安徽工业大学, 2018.

    CHONG Fa-wen. Simulation and optimization of emergency evacuation routes for indoor fires in large public buildings[D]. Maanshan: Anhui University of Technology, 2018. (in Chinese)
    [17] TSUKAHARA M, KOSHIBA Y, OHTANI H. Effectiveness of downward evacuation in a large-scale subway fire using Fire Dynamics Simulator[J]. Tunnelling and Underground Space Technology, 2011, 26(4): 573-581. doi: 10.1016/j.tust.2011.02.002
    [18] 王婷, 杜慕皓, 唐永福, 等. 基于BIM的火灾模拟与安全疏散分析[J]. 土木建筑工程信息技术, 2014, 6(6): 102-108. doi: 10.16670/j.cnki.cn11-5823/tu.2014.06.018

    WANG Ting, DU Mu-hao, TANG Yong-fu, et al. Analysis on fire model and safety evacuation based on BIM[J]. Journal of Information Technology in Civil Engineering and Architecture, 2014, 6(6): 102-108. (in Chinese) doi: 10.16670/j.cnki.cn11-5823/tu.2014.06.018
    [19] LI M X, ZHU S B, WANG J H, et al. Research on fire safety evacuation in a university library in Nanjing[J]. Procedia Engineering, 2018, 211: 372-378. doi: 10.1016/j.proeng.2017.12.025
    [20] 邹馨捷, 萨木哈尔·波拉提, 郝明, 等. 基于Pyrosim和PathFinder的高校学生宿舍火灾人员疏散安全性模拟分析[J]. 安全与环境工程, 2020, 27(4): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202004026.htm

    ZOU Xin-jie, BOLATI S, HAO Ming, et al. Personnel evacuation safety simulation analysis of college student dormitory fire based on Pyrosim and PathFinder[J]. Safety and Environmental Engineering, 2020, 27(4): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202004026.htm
    [21] ZHANG H, LONG H C. Simulation of evacuation in crowded places based on BIM and Pathfinder[J]. Journal of Physics: Conference Series, 2021, 1880(1): 012010. doi: 10.1088/1742-6596/1880/1/012010
    [22] 王莉. 基于PATHFINDER的公共场所人员疏散行为规律及仿真模拟[J]. 西安科技大学学报, 2017, 37(3): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201703009.htm

    WANG Li. Evacuation behavior and simulation of large public places based on PATHFINDER[J]. Journal of Xi'an University of Science and Technology, 2017, 37(3): 358-364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201703009.htm
    [23] SUN D J, GUAN S. Measuring vulnerability of urban metro network from line operation perspective[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 348-359. doi: 10.1016/j.tra.2016.09.024
    [24] FELICIANI C, NISHINARI K. Measurement of congestion and intrinsic risk in pedestrian crowds[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 124-155.
    [25] DAAMEN W. Modelling passenger flows in public transport facilities[D]. Delft: Netherlands Research School for Transport, 2004.
    [26] JIN T, YAMADA T. Irritating effects of fire smoke on visibility[J]. Fire Science and Technology, 1985, 5(1): 79-90.
    [27] GU B, SHENG V S, WANG Z J, et al. Incremental learning for V-support vector regression[J]. Neural Networks, 2015, 67: 140-150.
    [28] YANG Xiao-xia, ZHANG Rui, PAN Fu-quan, et al. Stochastic user equilibrium path planning for crowd evacuation at subway station based on social force model[J]. Physica A: Statistical Mechanics and its Applications, 2022, 594: 127033.
    [29] MA Chang-xi, WANG Chao, XU Xue-cai. A multi-objective robust optimization model for customized bus routes[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2359-2370.
    [30] YANG Xiao-xia, YANG Yi, LI Yong-xing, et al. Path planning for guided passengers during evacuation in subway station based on multi-objective optimization[J]. Applied Mathematical Modelling, 2022, 111: 777-801.
    [31] GUO Kai, ZHANG Li-mao. Simulation-based passenger evacuation optimization in metro stations considering multi-objectives[J]. Automation in Construction, 2022, 133: 104010.
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  57
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回