留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向智慧原油管道建设的运行方案快速智能决策

王军防 曹旦夫 矫捷 余红梅 袁庆 宇波 陈志敏 邓雅军

王军防, 曹旦夫, 矫捷, 余红梅, 袁庆, 宇波, 陈志敏, 邓雅军. 面向智慧原油管道建设的运行方案快速智能决策[J]. 交通运输工程学报, 2023, 23(5): 210-222. doi: 10.19818/j.cnki.1671-1637.2023.05.014
引用本文: 王军防, 曹旦夫, 矫捷, 余红梅, 袁庆, 宇波, 陈志敏, 邓雅军. 面向智慧原油管道建设的运行方案快速智能决策[J]. 交通运输工程学报, 2023, 23(5): 210-222. doi: 10.19818/j.cnki.1671-1637.2023.05.014
WANG Jun-fang, CAO Dan-fu, JIAO Jie, YU Hong-mei, YUAN Qing, YU Bo, CHEN Zhi-min, DENG Ya-jun. Fast intelligent decision of operation schemes for construction of intelligent crude oil pipelines[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 210-222. doi: 10.19818/j.cnki.1671-1637.2023.05.014
Citation: WANG Jun-fang, CAO Dan-fu, JIAO Jie, YU Hong-mei, YUAN Qing, YU Bo, CHEN Zhi-min, DENG Ya-jun. Fast intelligent decision of operation schemes for construction of intelligent crude oil pipelines[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 210-222. doi: 10.19818/j.cnki.1671-1637.2023.05.014

面向智慧原油管道建设的运行方案快速智能决策

doi: 10.19818/j.cnki.1671-1637.2023.05.014
基金项目: 

国家自然科学基金项目 51906018

北京石油化工学院重要科研成果培育项目 BIPTACF-002

北京市教育委员会资金支持项目 22019821001

详细信息
    作者简介:

    王军防(1973-),男,湖南娄底人,国家管网集团东部原油储运有限公司高级工程师,从事油气储运研究

    通讯作者:

    宇波(1972-),男,湖南岳阳人,北京石油化工学院教授,工学博士

  • 中图分类号: U171

Fast intelligent decision of operation schemes for construction of intelligent crude oil pipelines

Funds: 

National Natural Science Foundation of China 51906018

Award Cultivation Foundation from Beijing Institute of Petrochemical Technology BIPTACF-002

Fund of Beijing Municipal Education Commission 22019821001

More Information
  • 摘要: 为解决智慧原油管道建设实时优化的难题,从节能降耗和运行安全2个角度出发构建了以能耗和不安全系数最小为优化目标的运行方案智能决策模型;基于差分进化算法,从变异决策变量越界处理方法和离散决策变量变异算子2个算法角度提出了提高优化算法可靠性和优化效率的改进设想;结合算法计算流程和并行计算框架,提出了4种并行计算策略;以近900 km长的仪征-长岭原油管线(仪长线)作为测试管道来验证和进一步分析算法改进设想与并行计算策略。研究结果表明:结合智能决策模型和优化算法的运行方案智能决策方法可在保证管道安全运行的前提下使仪长线的能耗费用下降7.22%,节能效果明显;改进的变异决策变量越界处理方法和用于离散决策变量变异的浮点数圆整变异算子均能提高原油管道运行方案优化结果的可靠性,前者可使优化计算耗时至少缩短一半,后者可使优化计算耗时至少缩短2/3;在不同的计算机配置下,不同并行计算策略的优劣存在一定的差异,而在最优并行计算策略下,在服务器上优化计算耗时从220 s下降为10 s,加速比可达到22倍。可见,综合算法改进设想和并行计算策略的运行方案快速智能决策方法可使优化计算的加速比超过130倍,显著缩短了优化计算耗时,说明了该智能决策方法对于原油管道快速运行优化的有效性。

     

  • 图  1  原油管网结构中的2类长度

    Figure  1.  Two types of lengths in crude oil pipeline network structure

    图  2  仿真网格和压力分布

    Figure  2.  Simulation grid and pressure distribution

    图  3  管段仿真解耦计算流程

    Figure  3.  Decoupled calculation process of pipeline segment simulation

    图  4  智能优化策略实施流程

    Figure  4.  Implementation process of intelligent optimization strategy

    图  5  仪长线各输油站与设备分布

    Figure  5.  Station and device distributions in Yichang Pipeline

    图  6  不同种群大小下的能耗费用优化结果

    Figure  6.  Energy consumption cost optimization results under different population sizes

    图  7  不同种群大小下的计算耗时

    Figure  7.  Computation costs under different population sizes

    图  8  边界值处理方法下的能耗费用优化结果

    Figure  8.  Energy consumption cost optimization results under processing method of boundary value

    图  9  边界值处理方法下的计算耗时

    Figure  9.  Computation costs under processing method of boundary value

    图  10  随机数处理方法下的能耗费用优化结果

    Figure  10.  Energy consumption cost optimization results under processing method of random number

    图  11  随机数处理方法下的计算耗时

    Figure  11.  Computation costs under processing method of random number

    图  12  不同离散变量变异算子下的能耗费用优化结果

    Figure  12.  Energy consumption cost optimization results under different mutation operators of discrete variables

    图  13  不同离散变量变异算子下的计算耗时

    Figure  13.  Computation costs under different mutation operators of discrete variables

    图  14  不同并行计算策略在不同计算机上的计算耗时和加速比

    Figure  14.  Computation costs and acceleration ratios of different parallel computing strategies under different computers

  • [1] 吴长春, 左丽丽. 关于中国智慧管道发展的认识与思考[J]. 油气储运, 2020, 39(4): 361-370. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202004002.htm

    WU Chang-chun, ZUO Li-li. Understanding and thinking on the development of China's intelligent pipeline[J]. Oil and Gas Storage and Transportation, 2020, 39(4): 361-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202004002.htm
    [2] 税碧垣, 张栋, 李莉, 等. 智慧管网主要特征与建设构想[J]. 油气储运, 2020, 39(5): 500-505. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202005003.htm

    SHUI Bi-yuan, ZHANG Dong, LI Li, et al. Main characteristics and construction conception of intelligent pipeline network[J]. Oil and Gas Storage and Transportation, 2020, 39(5): 500-505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202005003.htm
    [3] 左丽丽, 曾春雷, 姜勇, 等. 长呼原油管道月度节能优化方案[J]. 油气储运, 2015, 34(5): 515-518. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201505013.htm

    ZUO Li-li, ZENG Chun-lei, JIANG Yong, et al. Program for optimization of monthly energy preservation in the Changqing-Hohhot Crude Oil Pipeline[J]. Oil and Gas Storage and Transportation, 2015, 34(5): 515-518. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201505013.htm
    [4] ZHOU Ming, ZHANG Yu, JIN Shi-jiu. Dynamic optimization of heated oil pipeline operation using PSO-DE algorithm[J]. Measurement, 2015, 59: 344-351. doi: 10.1016/j.measurement.2014.09.071
    [5] 吕梦芸. 基于模拟退火-蚁群算法的原油管道顺序输送运行优化模型[J]. 油气储运, 2017, 36(10): 1154-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201710009.htm

    LYU Meng-yun. The operation optimization model of crude oil batch transportation pipeline based on the simulated annealing-ant colony algorithm[J]. Oil and Gas Storage and Transportation, 2017, 36(10): 1154-1161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201710009.htm
    [6] BEKIBAYEV T, ZHAPBASBAYEV U, RAMAZANOVA G. Optimal regimes of heavy oil transportation through a heated pipeline[J]. Journal of Process Control, 2022, 115: 27-35. doi: 10.1016/j.jprocont.2022.04.020
    [7] 王军防, 矫捷, 余红梅, 等. 基于群体智能优化的原油管道系统能耗优化方法[J]. 油气储运, 2022, 41(11): 1269-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202211004.htm

    WANG Jun-fang, JIAO Jie, YU Hong-mei, et al. Optimization method for energy consumption of crude oil pipeline systems based on swarm intelligence optimization[J]. Oil and Gas Storage and Transportation, 2022, 41(11): 1269-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202211004.htm
    [8] YUAN Qing, CHEN Zhi-min, WANG Xin-ran, et al. Investigation and improvement of intelligent evolutionary algorithms for the energy cost optimization of an industry crude oil pipeline system[J]. Engineering Optimization, 2023, 55(5): 856-875. doi: 10.1080/0305215X.2022.2044805
    [9] YUAN Qing, GAO Yu-yao, LUO Yi-yang, et al. Study on the optimal operation scheme of a heated oil pipeline system under complex industrial conditions[J]. Energy, 2023(272): 127139.
    [10] 王森, 马志鹏, 李善综, 等. 梯级水库群优化调度并行动态规划方法[J]. 中国农村水利水电, 2017(11): 204-207. doi: 10.3969/j.issn.1007-2284.2017.11.043

    WANG Sen, MA Zhi-peng, LI Shan-zong, et al. Parallel dynamic programming for the optimal operation of cascaded reservoirs[J]. China Rural Water and Hydropower, 2017(11): 204-207. (in Chinese) doi: 10.3969/j.issn.1007-2284.2017.11.043
    [11] 纪昌明, 马皓宇, 李传刚, 等. 基于可行域搜索映射的并行动态规划[J]. 水利学报, 2018, 49(6): 649-661. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201806001.htm

    JI Chang-ming, MA Hao-yu, LI Chuan-gang, et al. Research on parallel dynamic programming based on feasible region search mapping[J]. Journal of Hydraulic Engineering, 2018, 49(6): 649-661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201806001.htm
    [12] 蒋志强, 纪昌明, 孙平, 等. 多层嵌套动态规划并行算法在梯级水库优化调度中的应用[J]. 中国农村水利水电, 2014(9): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201409018.htm

    JIANG Zhi-qiang, JI Chang-ming, SUN Ping, et al. The application of multilayer nested parallel dynamic programming algorithm in cascade reservoirs operation optimization[J]. China Rural Water and Hydropower, 2014(9): 70-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201409018.htm
    [13] 左丽丽, 戴材炜, 赵思睿, 等. 分枝定界法与内点法耦合的含环路输气管网运行优化[J]. 油气储运, 2023, 42(3): 343-351. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202303013.htm

    ZUO Li-li, DAI Cai-wei, ZHAO Si-rui, et al. Optimization on operation of gas pipeline network with cyclic structures by coupling branch-and-bound method with interior point method[J]. Oil and Gas Storage and Transportation, 2023, 42(3): 343-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202303013.htm
    [14] HERRERA F, LOZANO M, VERDEGAY J L. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis[J]. Artificial Intelligence Review, 1998, 12: 265-319. doi: 10.1023/A:1006504901164
    [15] KENNEDY J, EBERHART R. Particle swarm optimization[C]// IEEE. Proceedings of IEEE International Conference on Neural Networks. New York: IEEE, 1995: 1942-1948.
    [16] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
    [17] WU Xia, LI Chang-jun, HE Yu-fa, et al. Operation optimization of natural gas transmission pipelines based on stochastic optimization algorithms: a review[J]. Mathematical Problems in Engineering, 2018, 2018: 1-18.
    [18] 王森, 马志鹏, 李善综, 等. 梯级水库群优化调度并行自适应混沌整体退火遗传算法[J]. 人民珠江, 2016, 37(2): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ201602020.htm

    WANG Sen, MA Zhi-peng, LI Shan-zong, et al. Parallel self-adaptive chaos whole annealing genetic algorithm for optimal operation of cascaded reservoirs[J]. Pearl River, 2016, 37(2): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ201602020.htm
    [19] 王森, 马志鹏, 李善综, 等. 基于Fork/Join多核并行框架的梯级水库群优化调度[J]. 水利水电科技进展, 2017, 37(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201702009.htm

    WANG Sen, MA Zhi-peng, LI Shan-zong, et al. Optimal operation of cascaded reservoirs based on Fork/Join multi-core parallel framework[J]. Advances in Science and Technology of Water Resources, 2017, 37(2): 48-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201702009.htm
    [20] LI Bo, HE Miao, KANG Yang, et al. A hybrid meta-heuristic solution to operation optimization of hot oil pipeline[C]// IEEE. IOP Conference Series: Materials Science and Engineering. New York: IEEE, 2019: 1-10.
    [21] ZHANG Hai-fei, GE Hong-wei, YANG Jie-ming, et al. Combining affinity propagation with differential evolution for three-echelon logistics distribution optimization[J]. Applied Soft Computing, 2022, 131: 109787.
    [22] 吴长春, 严大凡. 热油管道稳态运行的两级递阶优化模型[J]. 石油学报, 1989, 10(3): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198903011.htm

    WU Chang-chun, YAN Da-fan. A two-level hierarchical model for optimizing steady operation of hot oil pipelines[J]. Acta Petrolei Sinica, 1989, 10(3): 109-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198903011.htm
    [23] 吴长春, 李东风, 赵忠德. 秦京管道稳态优化运行方案的分析与确定[J]. 油气储运, 2002, 21(12): 4-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY200212001.htm

    WU Chang-chun, LI Dong-feng, ZHAO Zhong-de. Steady operational optimization of Qinhuangdao to Beijing Hot Oil Pipeline[J]. Oil and Gas Storage and Transportation, 2002, 21(12): 4-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY200212001.htm
    [24] VESTERSTROM J, THOMSEN R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[C]// IEEE. Proceedings of the 2004 Congress on Evolutionary Computation. New York: IEEE, 2004: 1980-1987.
    [25] DEB A, ROY J S, GUPTA B. Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(8): 3920-3928.
    [26] CHARALAMPAKIS A E, TSIATAS G C. Critical evaluation of metaheuristic algorithms for weight minimization of truss structures[J]. Frontiers in Built Environment, 2019, DOI: 10.3389/fbuil.2019.00113.
    [27] NANDI S, REDDY M J. Comparative performance evaluation of self-adaptive differential evolution with GA, SCE and DE algorithms for the automatic calibration of a computationally intensive distributed hydrological model[J]. H2 Open Journal, 2020, 3(1): 306-327.
    [28] BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-657.
    [29] 袁庆, 杨洋, 侯昊, 等. 含蜡原油双结构参数模型参数回归的稳定性[J]. 油气储运, 2018, 37(3): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201803005.htm

    YUAN Qing, YANG Yang, HOU Hao, et al. The stability of parameter regression for double-structural-parameters model of waxy crude oil[J]. Oil and Gas Storage and Transportation, 2018, 37(3): 269-275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201803005.htm
    [30] YUAN Qing, LIU Hong-fei, LI Jing-fa, et al. Study on the parametric regression of a multiparameter thixotropic model for waxy crude oil[J]. Energy and Fuels, 2018, 32(4): 5020-5032.
    [31] 郑帅, 王子涵, 赵浩然, 等. 基于差分进化算法的飞机油量传感器布局优化方法[J]. 航空学报, 2022, 43(8): 125809. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202208018.htm

    ZHENG Shuai, WANG Zi-han, ZHAO Hao-ran, et al. Layout optimization method of aircraft fuel gauging sensor based on differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125809. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202208018.htm
    [32] ZOU De-xuan, GAO Li-qun, LI S, et al. Solving 0-1 knapsack problem by a novel global harmony search algorithm[J]. Applied Soft Computing, 2011, 11(2): 1556-1564. http://d.wanfangdata.com.cn/periodical/38abf987df6bfded0c7ff44df47568a5
    [33] HE Xing-shi, HAN Lin. A novel binary differential evolution algorithm based on artificial immune system[C]//IEEE. 2007 IEEE Congress on Evolutionary Computation. New York: IEEE, 2007: 2267-2272.
    [34] 孔祥勇, 高立群, 欧阳海滨, 等. 无参数变异的二进制差分进化算法[J]. 东北大学学报(自然科学版), 2014, 35(4): 484-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201404007.htm

    KONG Xiang-yong, GAO Li-qun, OUYANG Hai-bin, et al. Binary differential evolution algorithm based on parameterless mutation strategy[J]. Journal of Northeastern University (Natural Science), 2014, 35(4): 484-488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201404007.htm
    [35] 王森, 马志鹏, 李善综, 等. 粗粒度并行自适应混合粒子群算法及其在梯级水库群优化调度中的应用[J]. 长江科学院院报, 2017, 34(7): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201707032.htm

    WANG Sen, MA Zhi-peng, LI Shan-zong, et al. Coarse-grained parallel adaptive hybrid particle swarm optimization algorithm and its application to optimal operation of cascaded reservoirs[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(7): 149-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201707032.htm
  • 加载中
图(14)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  30
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-19
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回