留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向个体出行推荐的联邦异质性模型和算法

由林麟 贺俊姝 陈坤旭 何家琪 袁绍欣 赵娟娟 蔡铭

由林麟, 贺俊姝, 陈坤旭, 何家琪, 袁绍欣, 赵娟娟, 蔡铭. 面向个体出行推荐的联邦异质性模型和算法[J]. 交通运输工程学报, 2023, 23(5): 253-263. doi: 10.19818/j.cnki.1671-1637.2023.05.018
引用本文: 由林麟, 贺俊姝, 陈坤旭, 何家琪, 袁绍欣, 赵娟娟, 蔡铭. 面向个体出行推荐的联邦异质性模型和算法[J]. 交通运输工程学报, 2023, 23(5): 253-263. doi: 10.19818/j.cnki.1671-1637.2023.05.018
YOU Lin-lin, HE Jun-shu, CHEN Kun-xu, HE Jia-qi, YUAN Shao-xin, ZHAO Juan-juan, CAI Ming. Federated heterogeneous model and algorithm for personal travel recommendation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 253-263. doi: 10.19818/j.cnki.1671-1637.2023.05.018
Citation: YOU Lin-lin, HE Jun-shu, CHEN Kun-xu, HE Jia-qi, YUAN Shao-xin, ZHAO Juan-juan, CAI Ming. Federated heterogeneous model and algorithm for personal travel recommendation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 253-263. doi: 10.19818/j.cnki.1671-1637.2023.05.018

面向个体出行推荐的联邦异质性模型和算法

doi: 10.19818/j.cnki.1671-1637.2023.05.018
基金项目: 

国家自然科学基金项目 62002398

国家自然科学基金项目 41901188

国家重点研发计划 2020YFB1600400

广东省基础与应用基础研究基金项目 2023A1515012895

广州市科技计划项目 202206010056

详细信息
    作者简介:

    由林麟(1987-), 男, 辽宁丹东人, 中山大学副教授, 工学博士, 从事智能交通系统研究

    通讯作者:

    赵娟娟(1988-), 女, 河南焦作人, 首都师范大学讲师, 工学博士

  • 中图分类号: U491.1

Federated heterogeneous model and algorithm for personal travel recommendation

Funds: 

National Natural Science Foundation of China 62002398

National Natural Science Foundation of China 41901188

National Key Research and Development Program of China 2020YFB1600400

Guangdong Basic and Applied Basic Research Foundation 2023A1515012895

Science and Technology Planning Project of Guangzhou 202206010056

More Information
  • 摘要: 为实现兼顾偏好异质性与数据隐私化的个体出行推荐,基于模型参数化聚合与分布式训练的联邦学习计算范式,提出了一种联邦混合罗吉特(FMXL)模型,可解构标准MXL模型,以实现本地个体偏好与全局群体差异参数估算的分离;为了消除模型对原始数据的依赖,提出了标准与聚合2种联邦吉布斯抽样算法,通过本地与全局参数的交互,实现模型的层次化联合估计;为了验证所提模型与算法,基于Swiss Metro公开数据集,分别搭建了离线与在线2种出行推荐场景。分析结果表明:针对离线场景,2种联邦吉布斯抽样算法拟合的FMXL模型与标准多项式罗吉特模型相比,其对数似然值分别增大了157.8和153.2,预测率分别提升了12.3%和12.1%;与基于集中式吉布斯抽样算法拟合的MXL模型相比,其计算时间分别缩短了64.2%和76.9%,通信时间均缩短了86.2%;针对在线场景,FMXL模型的对数似然值和预测率均呈上升趋势,且整个估计过程的计算和通信时间均低于标准MXL模型。可见,以数据隐私化处理为前提,MXL模型的联邦化训练既能保证出行推荐的精准性,也能充分调动用户端闲置算力,有效提升出行推荐的时效性,体现了所提模型和算法的高适应和可拓展能力,同时基于联邦异质性模型的个体出行推荐还能有效推进交通系统的智能化进程。

     

  • 图  1  个体出行隐私化推荐的联邦学习

    Figure  1.  Federated learning for personal travel privacy recommendation

    图  2  联邦混合罗吉特模型

    Figure  2.  Federated mixed Logit model

    图  3  在线场景的精确性对比

    Figure  3.  Accuracy comparison in online scenario

    图  4  在线场景的时效性对比

    Figure  4.  Timeliness comparison in online scenario

    表  1  离线场景的模型参数估计结果

    Table  1.   Model parameter estimation results in offline scenario

    指标 标准MNL模型 FMXL模型
    MNL-Gibbs FMXL-SFGibbs FMXL-AFGibbs
    固定参数 μ Ω μ Ω
    均值 标准差 均值 标准差 均值 标准差 均值 标准差 均值 标准差
    α0 1.313 0.096 0.509 0.086 1.406 0.178 0.529 0.058 0.954 0.130
    α1 1.286 0.096 0.251 0.065 0.436 0.059 0.277 0.043 0.288 0.038
    βT 0.559 0.052 -0.006 0.070 1.421 0.218 -0.045 0.048 1.362 0.205
    βλ 0.069 0.045 -1.920 0.197 0.915 0.139 -1.880 0.195 0.722 0.108
    下载: 导出CSV

    表  2  离线场景的精确性对比

    Table  2.   Accuracy comparison in offline scenario

    指标 标准MNL模型 FMXL模型
    MNL-Gibbs FMXL-SFGibbs FMXL-AFGibbs
    L -711.325 -553.568 -558.169
    R 0.649 0.772 0.770
    下载: 导出CSV

    表  3  离线场景的时效性对比

    Table  3.   Timeliness comparison in offline scenario

    指标 MXL模型 FMXL模型
    MXL-Gibbs FMXL-SFGibbs FMXL-AFGibbs
    计算时间/s 9.305 3.331 2.151
    通信时间/s 5.184 0.746 0.746
    总计/s 14.489 4.077 2.897
    下载: 导出CSV
  • [1] 彭宏勤, 张国伍. 未来城市交通及其对未来城市发展影响[J]. 交通运输系统工程与信息, 2020, 20(1): 2-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001002.htm

    PENG Hong-qin, ZHANG Guo-wu. Future urban traffic and its influence on cities development[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 2-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001002.htm
    [2] LIU Yang, LYU Cheng, LIU Zhi-yuan, et al. Exploring a large-scale multi-modal transportation recommendation system[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103070. doi: 10.1016/j.trc.2021.103070
    [3] DAS D, SAHOO L, DATTA S. A survey on recommendation system[J]. International Journal of Computer Applications, 2017, 160(7): 6-10. doi: 10.5120/ijca2017913081
    [4] ZHANG Qian, LU Jie, JIN Yao-chu. Artificial intelligence in recommender systems[J]. Complex and Intelligent Systems, 2021, 7(1): 439-457. doi: 10.1007/s40747-020-00212-w
    [5] CUI Ge, LUO Jun, WANG Xin. Personalized travel route recommendation using collaborative filtering based on GPS trajectories[J]. International Journal of Digital Earth, 2018, 11(3): 284-307. doi: 10.1080/17538947.2017.1326535
    [6] WEN Y T, YEO J Y, PENG W C, et al. Efficient keyword-aware representative travel route recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1639-1652. doi: 10.1109/TKDE.2017.2690421
    [7] 孙全明, 常磊, 马铖, 等. 基于图嵌入和CaGBDT的多模态出行推荐[J]. 北京邮电大学学报, 2021, 44(5): 81-87, 106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYD202105013.htm

    SUN Quan-ming, CHANG Lei, MA Cheng, et al. Multi-modal transportation recommendation based on graph embedding and CaGBDT[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 81-87, 106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJYD202105013.htm
    [8] 杨敏, 李宏伟, 任怡凤, 等. 基于旅客异质性画像的公铁联程出行方案推荐方法[J]. 清华大学学报(自然科学版), 2022, 62(7): 1220-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207013.htm

    YANG Min, LI Hong-wei, REN Yi-feng, et al. Road-rail intermodal travel recommendations based on a passenger heterogeneity profile[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1220-1227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207013.htm
    [9] SONG Xiang, DANAF M, ATASOY B, et al. Personalized menu optimization with preference updater: a Boston case study[J]. Transportation Research Record, 2018, 2672(8): 599-607. doi: 10.1177/0361198118758674
    [10] BALBONTIN C, HENSHER D A, COLLINS A T. How to better represent preferences in choice models: the contributions to preference heterogeneity attributable to the presence of process heterogeneity[J]. Transportation Research Part B: Methodological, 2019, 122: 218-248. doi: 10.1016/j.trb.2019.02.007
    [11] GODDARD M. The EU general data protection regulation (GDPR): European regulation that has a global impact[J]. International Journal of Market Research, 2017, 59(6): 703-705. doi: 10.2501/IJMR-2017-050
    [12] YANG Qiang, LIU Yang, CHEN Tian-jian, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
    [13] JIAN Wei-tao, CHEN Kun-xu, HE Jun-shu, et al. A federated personal mobility service in autonomous transportation systems[J]. Mathematics, 2023, 11(12): 2693. doi: 10.3390/math11122693
    [14] LIU Sheng, CHEN Qi-yang, YOU Lin-lin. Fed2A: federated learning mechanism in asynchronous and adaptive modes[J]. Electronics, 2022, 11(9): 1393. doi: 10.3390/electronics11091393
    [15] WANG Si-hua, CHEN Ming-zhe, YIN Chang-chuan, et al. Federated learning for task and resource allocation in wireless high-altitude balloon networks[J]. IEEE Internet of Things Journal, 2021, 8(24): 17460-17475. doi: 10.1109/JIOT.2021.3080078
    [16] CHENG Ke-wei, FAN Tao, JIN Yi-lun, et al. Secureboost: a lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98. doi: 10.1109/MIS.2021.3082561
    [17] ZHU Hang-yu, JIN Yao-chu. Multi-objective evolutionary federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1310-1322. doi: 10.1109/TNNLS.2019.2919699
    [18] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//SINGH A, ZHU J. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Brookline: Microtome Publishing, 2017: 1273-1282.
    [19] GELFAND A E. Gibbs sampling[J]. Journal of the American Statistical Association, 2000, 95(452): 1300-1304. doi: 10.1080/01621459.2000.10474335
    [20] MCFADDEN D. The measurement of urban travel demand[J]. Journal of Public Economics, 1974, 3(4): 303-328. doi: 10.1016/0047-2727(74)90003-6
    [21] HENSHER D A, GREENE W H. The mixed logit model: the state of practice[J]. Transportation, 2003, 30: 133-176. doi: 10.1023/A:1022558715350
    [22] SONG Xiang. Personalization of future urban mobility[D]. Cambridge: Massachusetts Institute of Technology, 2018.
    [23] MCFADDEN D, TRAIN K. Mixed MNL models for discrete response[J]. Journal of Applied Econometrics, 2000, 15(5): 447-470. doi: 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
    [24] TRAIN K. Mixed logit with a flexible mixing distribution[J]. Journal of Choice Modelling, 2016, 19: 40-53. doi: 10.1016/j.jocm.2016.07.004
    [25] LEE L F. Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results[J]. Journal of Econometrics, 1997, 82(1): 1-35. doi: 10.1016/S0304-4076(97)00014-6
    [26] BANSAL P, KRUEGER R, BIERLAIRE M, et al. Bayesian estimation of mixed multinomial logit models: advances and simulation-based evaluations[J]. Transportation Research Part B: Methodological, 2020, 131: 124-142. doi: 10.1016/j.trb.2019.12.001
    [27] CHIB S, GREENBERG E. Understanding the metropolis-Hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
    [28] DANAF M, BECKER F, SONG Xiang, et al. Online discrete choice models: applications in personalized recommendations[J]. Decision Support Systems, 2019, 119: 35-45.
    [29] BEN-AKIVA M, MCFADDEN D, TRAIN K. Foundations of stated preference elicitation: consumer behavior and choice-based conjoint analysis[J]. Foundations and Trends in Econometrics, 2019, 10(1/2): 1-144.
    [30] DINH C T, TRAN N H, NGUYEN M N, et al. Federated learning over wireless networks: convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 398-409.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  59
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回