留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态叠加法的公路简支梁桥动力放大系数研究

周勇军 薛宇欣 高徐军 李冉冉 王业路 赵煜

周勇军, 薛宇欣, 高徐军, 李冉冉, 王业路, 赵煜. 基于模态叠加法的公路简支梁桥动力放大系数研究[J]. 交通运输工程学报, 2023, 23(6): 146-155. doi: 10.19818/j.cnki.1671-1637.2023.06.008
引用本文: 周勇军, 薛宇欣, 高徐军, 李冉冉, 王业路, 赵煜. 基于模态叠加法的公路简支梁桥动力放大系数研究[J]. 交通运输工程学报, 2023, 23(6): 146-155. doi: 10.19818/j.cnki.1671-1637.2023.06.008
ZHOU Yong-jun, XUE Yu-xin, GAO Xu-jun, LI Ran-ran, WANG Ye-lu, ZHAO Yu. Research on dynamic amplification factor of highway simply supported girder bridge based on modal superposition method[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 146-155. doi: 10.19818/j.cnki.1671-1637.2023.06.008
Citation: ZHOU Yong-jun, XUE Yu-xin, GAO Xu-jun, LI Ran-ran, WANG Ye-lu, ZHAO Yu. Research on dynamic amplification factor of highway simply supported girder bridge based on modal superposition method[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 146-155. doi: 10.19818/j.cnki.1671-1637.2023.06.008

基于模态叠加法的公路简支梁桥动力放大系数研究

doi: 10.19818/j.cnki.1671-1637.2023.06.008
基金项目: 

国家重点研发计划 2021YFB2601000

国家自然科学基金项目 51978063

陕西省自然科学基础研究计划项目 2021JLM-47

中央高校基本科研业务费专项资金项目 300102282108

详细信息
    作者简介:

    周勇军(1978-), 男, 湖北孝感人, 长安大学教授, 工学博士, 从事桥梁结构分析与智能检测研究

  • 中图分类号: U441.3

Research on dynamic amplification factor of highway simply supported girder bridge based on modal superposition method

Funds: 

National Key Research and Development Program of China 2021YFB2601000

National Natural Science Foundation of China 51978063

Natural Science Basic Research Project of Shaanxi Province 2021JLM-47

Fundamental Research Funds for the Central Universities 300102282108

More Information
    Author Bio:

    ZHOU Yong-jun(1978-), male, professor, PhD, zyj@chd.edu.cn

  • 摘要: 为研究模态阶数对挠度和弯矩动力放大系数分析的影响,以标准跨径的简支T梁桥、箱梁桥和空心板桥为研究对象,基于模态叠加法推导了简支梁在三轴车作用下的动力放大系数表达式;采用MATLAB软件编制了车桥耦合振动分析程序进行数值计算,研究了桥面不平整度、车辆速度与车辆质量3种因素下挠度和弯矩动力放大系数随模态截断阶数的变化规律,分析了不同模态阶数下两者的比值关系,对一座30 m简支箱梁桥进行了实桥动载试验验证。研究结果表明:挠度动力放大系数受模态阶数影响较小,1阶模态对挠度动力放大系数的贡献率为99%,选取前5阶模态时,可以获得完整桥梁结构响应信息;弯矩动力放大系数受模态阶数影响较大,1阶模态对弯矩动力放大系数的贡献率为86%,前5阶模态贡献率为90%;当考虑前25阶甚至更多模态时能够得到弯矩动力放大系数可靠结果;车辆速度在一定程度上影响模态阶数对动力放大系数的贡献率,桥面不平整度与车辆质量对动力放大系数收敛阶数影响不甚显著;弯矩动力放大系数小于挠度动力放大系数,当取1阶模态时,两者比值为0.86,取前15阶模态时,两者比值为0.95;建议相同测试条件下采用挠度动力放大系数。

     

  • 图  1  匀速移动常量力作用的简支梁模型

    Figure  1.  Simply supported girder model under constant moving forces

    图  2  挠度和弯矩动力放大系数

    Figure  2.  Dynamic amplification factors of deflections and bending moments

    图  3  车辆模型

    Figure  3.  Vehicle model

    图  4  桥面不平整度对动力放大系数的影响

    Figure  4.  Effects of deck roughnesses on dynamic amplification factors

    图  5  车辆速度对动力放大系数的影响

    Figure  5.  Effects of vehicle speeds on dynamic amplification factors

    图  6  车辆质量对动力放大系数的影响

    Figure  6.  Effects of vehicle masses on dynamic amplification factors

    图  7  模态阶数对挠度及弯矩动力放大系数的贡献率

    Figure  7.  Contributions of modal order to deflection and bending moment dynamic amplification factors

    图  8  动力放大系数比值

    Figure  8.  Ratios of dynamic amplification factors

    图  9  实桥动载试验

    Figure  9.  Bridge dynamic field test

    图  10  实测应变和挠度时程曲线

    Figure  10.  Time history curves of measured strains and deflections

    表  1  简支梁主要参数

    Table  1.   Primary parameters of simply supported girders

    结构类型 跨径/m 单位长度质量/
    (kg·m-1)
    抗弯刚度/
    (1010 N·m2)
    T梁 20 9 755 3.37
    30 11 122 7.46
    40 13 673 15.76
    箱梁 20 10 469 2.48
    30 12 349 5.22
    40 14 467 9.50
    空心板 10 11 156 0.59
    13 12 304 0.90
    16 13 452 1.30
    20 15 173 2.06
    下载: 导出CSV

    表  2  实测结果

    Table  2.   Measured results

    v/
    (km·h-1)
    yd, max/
    mm
    yj, max/
    mm
    εd, max εj, max 1+μy 1+μM
    20 0.956 0.836 3.972 3.675 1.14 1.08
    30 0.993 0.918 4.393 4.151 1.08 1.06
    40 1.369 1.278 5.091 4.895 1.07 1.04
    50 1.192 1.010 5.100 4.388 1.18 1.16
    下载: 导出CSV
  • [1] 邓露, 何维, 俞扬, 等. 公路车-桥耦合振动的理论和应用研究进展[J]. 中国公路学报, 2018, 31(7): 38-54.

    DENG Lu, HE Wei, YU Yang, et al. Research progress in theory and applications of highway vehicle-bridge coupling vibration[J]. China Journal of Highway and Transport, 2018, 31(7): 38-54. (in Chinese)
    [2] 周勇军, 薛宇欣, 李冉冉, 等. 桥梁冲击系数理论研究和应用进展[J]. 中国公路学报, 2021, 34(4): 31-50.

    ZHOU Yong-jun, XUE Yu-xin, LI Ran-ran, et al. State-of-the-art of theory and applications of bridge dynamic load allowance[J]. China Journal of Highway and Transport, 2021, 34(4): 31-50. (in Chinese)
    [3] YU Yang, DENG Lu, WANG Wei, et al. Local impact analysis for deck slabs of prestressed concrete box-girder bridges subject to vehicle loading[J]. Journal of Vibration and Control, 2017, 23(1): 31-45. doi: 10.1177/1077546315575434
    [4] SAMAAN M, KENNEDY J B, SENNAH K. Impact factors for curved continuous composite multiple-box girder bridges[J]. Journal of Bridge Engineering, 2007, 12(1): 80-88. doi: 10.1061/(ASCE)1084-0702(2007)12:1(80)
    [5] DENG Lu, HE Wei, SHAO Yi. Dynamic impact factors for shear and bending moment of simply supported and continuous concrete girder bridges[J]. Journal of Bridge Engineering, 2014, 20(11): 04015005.
    [6] 蒋培文, 贺拴海, 宋一凡, 等. 简支梁车桥耦合振动及其影响因素[J]. 长安大学学报(自然科学版), 2013, 33(1): 59-66

    JIANG Pei-wen, HE Shuan-hai, SONG Yi-fan, et al. Vehicle-bridge coupled vibration and its influencing factors of simple beam[J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(1): 59-66. (in Chinese)
    [7] 蒋培文, 贺拴海, 宋一凡, 等. 重载车辆-简支梁桥耦合振动影响参数分析[J]. 合肥工业大学学报(自然科学版), 2012, 35(2): 205-210, 288.

    JIANG Pei-wen, HE Shuan-hai, SONG Yi-fan, et al. Analysis of influence parameters in coupled vibration of vehicle-bridge for heavy vehicles driving through simply supported beam[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(2): 205-210, 288. (in Chinese)
    [8] 周勇军, 蔡军哲, 石雄伟, 等. 基于加权法的桥梁冲击系数计算方法[J]. 交通运输工程学报, 2013, 13(4): 29-36. doi: 10.19818/j.cnki.1671-1637.2013.04.005

    ZHOU Yong-jun, CAI Jun-zhe, SHI Xiong-wei, et al. Computing method of bridge impact factor based on weighted method[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 29-36. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2013.04.005
    [9] MOHSENI I, ASHIN A, CHOI W, et al. Development of dynamic impact factor expressions for skewed composite concrete-steel slab-on-girder bridges[J]. Advances in Materials Science and Engineering, 2018, 2018: 4313671.
    [10] FAFARD M, LAFLAMME M, SAVARD M, et al. Dynamic analysis of existing continuous bridge[J]. Journal of Bridge Engineering, 1998, 3(1): 28-37. doi: 10.1061/(ASCE)1084-0702(1998)3:1(28)
    [11] MA L, ZHANG W, HAN W S, et al. Determining the dynamic amplification factor of multi-span continuous box girder bridges in highways using vehicle-bridge interaction analyses[J]. Engineering Structures, 2019, 181: 47-59. doi: 10.1016/j.engstruct.2018.11.059
    [12] 高庆飞, 张坤, 刘晨光, 等. 移动车辆荷载作用下桥梁冲击系数的若干讨论[J]. 哈尔滨工业大学学报, 2020, 52(3): 44-50.

    GAO Qing-fei, ZHANG Kun, LIU Chen-guang, et al. Discussions on the impact factor of bridges subjected to moving vehicular loads[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 44-50. (in Chinese)
    [13] LUDESCHER H, BRÜEHWILER E. Dynamic amplification of traffic loads on road bridges[J]. Structural Engineering International, 2009, 19(2): 190-197. doi: 10.2749/101686609788220231
    [14] KALIN J, ŽNIDARIČ A, ANŽLIN A, et al. Measurements of bridge dynamic amplification factor using bridge weigh-in-motion data[J]. Structure and Infrastructure Engineering, 2022, 18(8): 1164-1176. doi: 10.1080/15732479.2021.1887291
    [15] LI H Y, WEKEZER J, KWASNIEWSKI L. Dynamic response of a highway bridge subjected to moving vehicles[J]. Journal of Bridge Engineering, 2008, 13(5): 439-448. doi: 10.1061/(ASCE)1084-0702(2008)13:5(439)
    [16] 邓露, 段林利, 邹启令. 桥梁应变与挠度动力放大系数的大小关系研究[J]. 工程力学, 2018, 35(1): 126-135.

    DENG Lu, DUAN Lin-li, ZOU Qi-ling. Comparison of dynamic amplification factors calculated from bridge strain and deflection[J]. Engineering Mechanics, 2018, 35(1): 126-135. (in Chinese)
    [17] 邓露, 陈雅仙, 韩万水, 等. 中小跨径公路混凝土简支梁桥冲击系数研究及建议取值[J]. 中国公路学报, 2020, 33(1): 69-78.

    DENG Lu, CHEN Ya-xian, HAN Wan-shui, et al. Studying impact factors for short- and medium-span simply supported concrete highway bridges and its suggested values[J]. China Journal of Highway and Transport, 2020, 33(1): 69-78. (in Chinese)
    [18] 邓露, 段林利, 何维, 等. 中国公路车-桥耦合振动车辆模型研究[J]. 中国公路学报, 2018, 31(7): 92-100.

    DENG Lu, DUAN Lin-li, HE Wei, et al. Study on vehicle model for vehicle-bridge coupling vibration of highway bridges in China[J]. China Journal of Highway and Transport, 2018, 31(7): 92-100. (in Chinese)
    [19] 周勇军, 于明策, 杨敏, 等. 基于低通滤波的连续刚构桥冲击系数试验研究[J]. 测控技术, 2017, 36(1): 18-22.

    ZHOU Yong-jun, YU Ming-ce, YANG Min, et al. Dynamic load allowance test of continuous rigid frame bridge based on low-pass filter method[J]. Measurement and Control Technology, 2017, 36(1): 18-22. (in Chinese)
    [20] 张喜刚. 公路桥梁汽车荷载标准研究[M]. 北京: 人民交通出版社股份有限公司, 2014.

    ZHANG Xi-gang. Research on Vehicle Load Standard for Highway Bridges[M]. Beijing: China Communications Press Co., Ltd., 2014. (in Chinese)
    [21] 邓建良, 吴定俊, 李奇. 简支梁桥动力系数的移动荷载列分析[J]. 工程力学, 2012, 29(10): 177-183, 204.

    DENG Jian-liang, WU Ding-jun, LI Qi. Dynamic factor analysis of simple-supported bridges using discrete moving load model[J]. Engineering Mechanics, 2012, 29(10): 177-183, 204. (in Chinese)
    [22] 周勇军, 赵洋, 赵煜, 等. 基于动载试验荷载效率的简支梁桥冲击系数研究[J]. 振动与冲击, 2021, 40(20): 207-216.

    ZHOU Yong-jun, ZHAO Yang, ZHAO Yu, et al. A study on dynamic load allowance of a simply supported girder bridge based on load efficiency of a dynamic load test[J]. Journal of Vibration and Shock, 2021, 40(20): 207-216. (in Chinese)
    [23] HO H, NISHIO M. Evaluation of dynamic responses of bridges considering traffic flow and surface roughness[J]. Engineering Structures, 2020, 225: 111256. doi: 10.1016/j.engstruct.2020.111256
    [24] 韩智强, 李路遥, 周勇军, 等. 多点激励简支梁桥车桥耦合振动响应[J]. 科学技术与工程, 2021, 21(18): 7425-7432.

    HAN Zhi-qiang, LI Lu-yao, ZHOU Yong-jun, et al. Vibration response of simply supported beam vehicle-bridge coupling under multi-point excitation[J]. Science Technology and Engineering, 2021, 21(18): 7425-7432. (in Chinese)
    [25] PAEGLITE I, SMIRNOVS J, PAEGLITIS A. Evaluation of the increased dynamic effects on the highway bridge superstructure[J]. The Baltic Journal of Road and Bridge Engineering, 2018, 13(3): 301-312.
    [26] 刘晨光, 张连振, 高庆飞, 等. 考虑车队叠加效应与桥面不平整度影响的梁式桥动力冲击系数研究[J]. 振动与冲击, 2019, 38(19): 226-232, 268.

    LIU Chen-guang, ZHANG Lian-zhen, GAO Qing-fei, et al. Research on the dynamic amplification factor of girder bridges considering interaction effect of vehicle string and bridge deck evenness[J]. Journal of Vibration and Shock, 2019, 38(19): 226-232, 268. (in Chinese)
    [27] GAO Qing-fei, ZHANG Kun, WANG Tong, et al. Numerical investigation of the dynamic responses of steel-concrete girder bridges subjected to moving vehicular loads[J]. Measurement and Control, 2021, 54(3/4): 465-484.
    [28] 刘晨光. 基于车致振动响应的梁式桥结构动力检测与状态诊断方法[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LIU Chen-guang. Dynamic detection and diagnosis methods for beam bridge based on vehicle exited vibration response[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [29] 桂水荣, 陈水生, 万水. 基于路面一致激励车桥耦合非平稳随机振动分析[J]. 振动、测试与诊断, 2018, 38(5): 908-915, 1077.

    GUI Shui-rong, CHEN Shui-sheng, WAN Shui. Analysis of consistent stimulus of road roughness on vehicle-bridge coupling nonstationary random vibration[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38(5): 908-915, 1077. (in Chinese)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  31
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回