留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导EDS磁浮列车多级悬挂方案优化与动力学性能

马卫华 李腾飞 胡俊雄 张赛 罗世辉

马卫华, 李腾飞, 胡俊雄, 张赛, 罗世辉. 超导EDS磁浮列车多级悬挂方案优化与动力学性能[J]. 交通运输工程学报, 2023, 23(6): 168-179. doi: 10.19818/j.cnki.1671-1637.2023.06.010
引用本文: 马卫华, 李腾飞, 胡俊雄, 张赛, 罗世辉. 超导EDS磁浮列车多级悬挂方案优化与动力学性能[J]. 交通运输工程学报, 2023, 23(6): 168-179. doi: 10.19818/j.cnki.1671-1637.2023.06.010
MA Wei-hua, LI Teng-fei, HU Jun-xiong, ZHANG Sai, LUO Shi-hui. Optimization on multi-stage suspension scheme and dynamics performance of superconducting EDS maglev train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 168-179. doi: 10.19818/j.cnki.1671-1637.2023.06.010
Citation: MA Wei-hua, LI Teng-fei, HU Jun-xiong, ZHANG Sai, LUO Shi-hui. Optimization on multi-stage suspension scheme and dynamics performance of superconducting EDS maglev train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 168-179. doi: 10.19818/j.cnki.1671-1637.2023.06.010

超导EDS磁浮列车多级悬挂方案优化与动力学性能

doi: 10.19818/j.cnki.1671-1637.2023.06.010
基金项目: 

国家自然科学基金项目 51875483

国家自然科学基金项目 52102442

中国国家铁路集团有限公司科技研究开发计划 N2021J033

四川省科技计划项目 2021YJ0002

详细信息
    作者简介:

    马卫华(1979-),男,山东滕州人,西南交通大学研究员,工学博士,从事磁悬浮车辆系统动力学研究

    通讯作者:

    李腾飞(1992-),男,河南兰考人,西南交通大学工程硕士研究生

  • 中图分类号: U266.4

Optimization on multi-stage suspension scheme and dynamics performance of superconducting EDS maglev train

Funds: 

National Natural Science Foundation of China 51875483

National Natural Science Foundation of China 52102442

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. N2021J033

Science and Technology Program of Sichuan Province 2021YJ0002

More Information
  • 摘要: 研究了超导电动悬浮(EDS)磁浮列车悬浮架的悬挂方案,分析了超导EDS磁浮列车的工作原理和既有悬浮架的悬挂系统技术特征,提出了一种多级悬挂系统优化方案,从理论上推导了多级悬挂车辆的动力学微分方程;基于多体动力学软件SIMPACK与数学工具MATLAB/Simulink搭建了超导EDS磁浮列车动力学联合仿真框架,分析了超导EDS系统的磁力特性;将计算得到的电磁力组建成一个查找表,利用SIMPACK分别构建了既有悬挂方案和多级悬挂方案下3车体和4悬浮架的三编组超导EDS磁浮列车机械模型,借助MATLAB/Simulink建立了电磁力查找模型,通过SIMAT模块将查找表与机械动力学模型耦合,并通过联合仿真对比了在轨道随机不平顺条件下不同悬挂方案的超导EDS磁浮列车动力学响应。研究结果表明:与既有方案相比,采用多级悬挂方案时列车悬浮架和车体的振动响应明显减小,二者振动加速度峰值降幅均达到50%以上,车体振动加速度均小于1 m·s-2,车体各向平稳性指标基本保持在2.5以下的优秀水平,证明采用多级悬挂方案可以改善列车运行时的动力响应,提高车辆整体的乘坐舒适性。研究工作可为超导EDS磁浮列车的悬浮架方案优化设计和动力学研究提供理论依据和参考。

     

  • 图  1  超导EDS磁浮列车运行原理

    Figure  1.  Operation principles of superconducting EDS maglev train

    图  2  多级悬挂优化方案

    Figure  2.  Optimization scheme for multi-stage suspension

    图  3  多级悬挂优化方案各结构受力

    Figure  3.  Forces of each structure of multi-stage suspension optimization scheme

    图  4  超导EDS磁浮系统

    Figure  4.  Superconducting EDS maglev system

    图  5  电磁力数据分布

    Figure  5.  Electromagnetic force data distribution

    图  6  MATLAB/Simulink与SIMPACK联合仿真框架

    Figure  6.  Co-simulation framework of MATLAB/Simulink and SIMPACK

    图  7  轨道不平顺变化规律

    Figure  7.  Regularities of track irregularity

    图  8  不同方案下悬浮架振动加速度时域变化曲线

    Figure  8.  Time domain variation curves of vibration accelerations of levitation bogie under different schemes

    图  9  不同方案下车体振动加速度时域变化曲线

    Figure  9.  Time domain variation curves of vibration accelerations of train body under different schemes

    图  10  不同方案下超导磁体振动加速度时域变化曲线

    Figure  10.  Time domain variation curves of vibration accelerations of superconducting magnet under different schemes

    图  11  不同方案下车辆平稳性指标随速度变化曲线

    Figure  11.  Curves of vehicle stability indexes changing with speed under different schemes

    表  1  建模参数

    Table  1.   Modeling parameters

    参数 数值
    端车车体质量/kg 2.055×104
    中间车车体质量/kg 1.37×104
    悬浮架质量/kg 6.3×103
    超导磁体质量/kg 2.8×103
    悬浮架长度/m 5.4
    悬浮点横向间距(轨距)/m 2.98
    悬浮架质心纵向间距/m 21.6
    车体质心纵向间距/m 25.875
    超导线圈极距/m 1.35
    二系空簧垂向刚度/(N·m-1) 1.96×105
    二系空簧横向刚度/(N·m-1) 2.25×105
    二系空簧垂向阻尼/(N·s·m-1) 2.45×103
    二系空簧横向阻尼/(N·s·m-1) 1.47×104
    一系橡胶弹簧纵向刚度/(N·m-1) 4.60×106
    一系橡胶弹簧横向刚度/(N·m-1) 3.34×106
    一系橡胶弹簧垂向刚度/(N·m-1) 2.33×106
    一系橡胶弹簧阻尼/(N·m-1) 3.00×103
    下载: 导出CSV
  • [1] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [2] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.006
    [3] 余浩伟, 寇峻瑜, 李艳. 600 km·h-1高速磁浮在国内的适应性及工程化发展[J]. 铁道工程学报, 2020, 37(12): 16-20, 88.

    YU Hao-wei, KOU Jun-yu, LI Yan. Adaptability and engineering development of 600 km·h-1 high-speed maglev in China[J]. Journal of Railway Engineering Society, 2020, 37(12): 16-20, 88. (in Chinese)
    [4] 熊嘉阳, 沈志云. 中国高速铁路的崛起和今后的发展[J]. 交通运输工程学报, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002

    XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.002
    [5] 王一宇, 蔡尧, 宋旭亮, 等. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报, 2021, 36(8): 1628-1635.

    WANG Yi-yu, CAI Yao, SONG Xu-liang, et al. Characteristic analysis and experiment of the equivalent simulation system for null-flux electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1628-1635. (in Chinese)
    [6] 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009

    MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.009
    [7] 舒信伟, 谷传纲, 梁习锋, 等. 高速磁浮列车气动阻力性能数值模拟与参数化评估[J]. 交通运输工程学报, 2006, 6(2): 6-10.

    SHU Xin-wei, GU Chuan-gang, LIANG Xi-feng, et al. Numerical simulation and parameterized investigation of aerodynamic drag performances of high-speed maglev trains[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 6-10. (in Chinese)
    [8] ROTE D M, CAI Yi-gang. Review of dynamic stability of repulsive-force maglev suspension systems[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1383-1390. doi: 10.1109/20.996030
    [9] HOSHINO H, SUZUKI E, WATANABE K. Reduction of vibrations in maglev vehicles using active primary and secondary suspension control[J]. Quarterly Report of RTRI, 2008, 49(2): 113-118. doi: 10.2219/rtriqr.49.113
    [10] WATANABE K, YOSHIOKA H, SUZUKI E. Combined control of primary and secondary suspension of maglev vehicles[J]. Quarterly Report of RTRI, 2004, 45(1): 26-31. doi: 10.2219/rtriqr.45.26
    [11] WATANABE K, YOSHIOKA H, SUZUKI E, et al. A study of vibration control systems for superconducting maglev vehicles (vibration control of lateral and rolling motions)[J]. Journal of System Design and Dynamics, 2007, 1(3): 593-604. doi: 10.1299/jsdd.1.593
    [12] WATANABE K, YOSHIOKA H, WATANABE E, et al. A study of the vibration control system for a superconducting maglev vehicle[C]//J-STAGE. The Proceedings of the International Conference on Motion and Vibration Control. Tokyo: J-STAGE, 2002: 907-912.
    [13] EARLY R, ABE Y, OHSAKI H. Numerical analysis of the vehicle dynamics of the superconducting maglev system at the Yamanashi Test Line[C]//MAGLEV. Proceeding of 17th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: MAGLEV, 2002: 1-10.
    [14] OHSAKI H, BANDO S. Numerical analysis of elastic vibration of superconducting maglev vehicles[C]//MAGLEV. Proceeding of 19th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: MAGLEV, 2006: 1-6.
    [15] HOSHINO H, SUZUKI E, YONEZU T, et al. Examination of vehicle motion characteristics of a maglev train set using a reduced-scale model experiment apparatus[J]. Quarterly Report of RTRI, 2012, 53(1): 52-58. doi: 10.2219/rtriqr.53.52
    [16] HA H, PARK K S. Construction of simulation framework for dynamic analysis of a superconducting magnetic levitation train with flexible car bodies[J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1177-1183. doi: 10.1007/s12206-019-0217-1
    [17] YOSHIOKA H. 山梨磁悬浮试验线车辆MLX01的动力学性能[J]. 国外铁道车辆, 2000, 37(5): 27-32.

    YOSHIOKA H. Dynamic performance of MLX01 car on Yamanashi Magnetic Levitation Test Line[J]. Foreign Rolling Stock, 2000, 37(5): 27-32. (in Chinese)
    [18] OHASHI S. Effect of the damper coils on the guideway displacement in the superconducting magnetically levitated bogie[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 3600604. doi: 10.1109/TASC.2012.2186624
    [19] OHASHI S. Effect of the active damper coils of the superconducting magnetically levitated bogie in case of acceleration[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4163-4166. doi: 10.1109/TMAG.2008.2002788
    [20] OHASHI S, UESHIMA T. Control method of the semi-active damper coil system in the superconducting magnetically levitated bogie against vertical and pitching oscillation[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4542-4545. doi: 10.1109/TMAG.2012.2202378
    [21] OHASHI S, OHSAKI H, MASADA E. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4001-4003. doi: 10.1109/20.800735
    [22] YONEZU T, WATANABE K, SUZUKI E, et al. Characteristics of magnetic springs for guidance of superconducting maglev vehicles[J]. Quarterly Report of RTRI, 2018, 59(4): 293-298. doi: 10.2219/rtriqr.59.4_293
    [23] HAN H S, KIM D S. Magnetic Levitation-Maglev Technology and Applications[M]. Berlin: Springer, 2016.
    [24] 李志强, 李亨利, 缪惠勇. 新型轴箱橡胶弹簧的研制[J]. 铁道车辆, 2011, 49(4): 12-14, 47.

    LI Zhi-qiang, LI Heng-li, MIAO Hui-yong. Development of new type axle box rubber springs[J]. Rolling Stock, 2011, 49(4): 12-14, 47. (in Chinese)
    [25] YAN Zhao-ying, MA Guang-tong, ZHANG Wei-hai, et al. Dynamic response of a superconducting EDS train with vehicle/guideway coupled dynamics[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-5.
    [26] HE J L, ROTE D M, COFFEY H T. Applications of the dynamic circuit theory to maglev suspension systems[J]. IEEE Transactions on Magnetics, 1993, 29(6): 4153-4164. doi: 10.1109/20.280868
    [27] SONG M K, KIM K H. Development of dynamic analysis system for guideway structures by considering ultra high-speed maglev train-guideway interaction[J]. Journal of the Korean Society of Civil Engineers, 2005, https://www.researchgate.net/publication/264143704. https://www.researchgate.net/publication/264143704
    [28] OHASHI S, OHSAKI H, MASADA E. Running characteristics of the superconducting magnetically levitated train in the case of superconducting coil quenching[J]. Electrical Engineering in Japan, 2000, 130(1): 95-105. doi: 10.1002/(SICI)1520-6416(200001)130:1<95::AID-EEJ12>3.0.CO;2-I
    [29] SHI Yan, MA Wei-hua, LI Miao, et al. Research on dynamics of a new high speed maglev vehicle[J]. Vehicle System Dynamics, 2022, 60(3): 721-742. doi: 10.1080/00423114.2020.1838568
    [30] NISHIKAWA Y, IGARASHI M, KUSADA S. Development of new-type superconducting magnets for the superconducting maglev[C]//MAGLEV. Proceeding of 19th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: MAGLEV, 2016: 7-12.
    [31] 赵春发, 翟婉明. 磁浮车辆/轨道系统动力学(Ⅱ)——建模与仿真[J]. 机械工程学报, 2005, 41(8): 163-175.

    ZHAO Chun-fa, ZHAI Wan-ming. Dynamics of maglev vehicle/guideway systems (Ⅱ)—modeling and simulation[J]. Chinese Journal of Mechanical Engineering, 2005, 41(8): 163-175. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  19
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回