留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁浮列车悬浮系统LSTM与MGD融合的在线异常检测方法

杨彪 梅子 龙志强

杨彪, 梅子, 龙志强. 磁浮列车悬浮系统LSTM与MGD融合的在线异常检测方法[J]. 交通运输工程学报, 2023, 23(6): 216-231. doi: 10.19818/j.cnki.1671-1637.2023.06.014
引用本文: 杨彪, 梅子, 龙志强. 磁浮列车悬浮系统LSTM与MGD融合的在线异常检测方法[J]. 交通运输工程学报, 2023, 23(6): 216-231. doi: 10.19818/j.cnki.1671-1637.2023.06.014
YANG Biao, MEI Zi, LONG Zhi-qiang. Online anomaly detection method integrating LSTM and MGD for suspension system of maglev trains[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 216-231. doi: 10.19818/j.cnki.1671-1637.2023.06.014
Citation: YANG Biao, MEI Zi, LONG Zhi-qiang. Online anomaly detection method integrating LSTM and MGD for suspension system of maglev trains[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 216-231. doi: 10.19818/j.cnki.1671-1637.2023.06.014

磁浮列车悬浮系统LSTM与MGD融合的在线异常检测方法

doi: 10.19818/j.cnki.1671-1637.2023.06.014
基金项目: 

国家自然科学基金项目 52232013

国家自然科学基金项目 52332011

详细信息
    作者简介:

    杨彪(1998-),男,江西丰城人,国防科技大学工学博士研究生,从事智能控制与性能监测相关研究

    龙志强(1967-),男,江西吉安人,国防科技大学研究员,工学博士

  • 中图分类号: U237

Online anomaly detection method integrating LSTM and MGD for suspension system of maglev trains

Funds: 

National Natural Science Foundation of China 52232013

National Natural Science Foundation of China 52332011

More Information
  • 摘要: 针对磁浮列车悬浮系统的在线异常检测问题,提出了一种基于长短时记忆(LSTM)神经网络与多元高斯分布(MGD)的检测方法;建立学习悬浮系统正常运行的LSTM时间序列预测模型,得到了正常情况下的预测误差;基于间隙、电流和加速度的预测误差,建立了反映正常情况下预测误差分布特性的MGD模型;以对数概率密度作为检测指标,设计了在线检测逻辑,并以F1分数作为检测效果衡量指标设置阈值;为了验证所提方法的有效性,利用磁浮列车运营线数据模拟在线数据,采用所提方法对过轨道接缝异常、砸轨异常和加速度信号异常进行了检测与分析。研究结果表明:在检测以上3类异常时,所提方法的F1分数分别达到了100.00%、97.85%和83.33%,所提方法的检测指标在正常和异常情况下对比明显,可以反映出悬浮系统产生异常到调整好的具体时间段,并且算法平均耗时约2 s;相较于基于超球体高斯分布方法,所提方法检测率平均提高了1.9%,其中对于持续时间短的过轨道接缝异常的检测率提高了9.4%。可见,所提方法可以对悬浮系统状态数据进行异常在线检测。

     

  • 图  1  ANN中的人工神经单元

    Figure  1.  Artificial neurons used in ANN

    图  2  RNN结构及其展开

    Figure  2.  RNN structure and expansion

    图  3  LSTM单元结构

    Figure  3.  LSTM unit structure

    图  4  间隙、电流、加速度预测误差分布

    Figure  4.  Distributions of prediction errors of gap, current, and acceleration

    图  5  LSTM在线异常检测流程

    Figure  5.  Flow of LSTM online anomaly detection

    图  6  磁浮列车悬浮数据采集系统设计

    Figure  6.  Design of levitation data acquisition system for maglev trains

    图  7  XtgXtaXtc数据曲线

    Figure  7.  Data curves of Xtg, Xta, and Xtc

    图  8  XvgXvaXvc数据曲线

    Figure  8.  Data curves of Xvg, Xva, and Xvc

    图  9  Vg1Va1Vc1数据曲线

    Figure  9.  Data curves of Vg1, Va1, and Vc1

    图  10  Tg1Ta1Tc1数据曲线

    Figure  10.  Data curves of Tg1, Ta1, and Tc1

    图  11  Vg2Va2Vc2数据曲线

    Figure  11.  Data curves of Vg2, Va2, and Vc2

    图  12  Tg2Ta2Tc2数据曲线

    Figure  12.  Data curves of Tg2, Ta2, and Tc2

    图  13  Vg3Va3Vc3数据曲线

    Figure  13.  Data curves of Vg3, Va3, and Vc3

    图  14  Tg3Ta3Tc3数据曲线

    Figure  14.  Data curves of Tg3, Ta3, and Tc3

    图  15  训练集预测误差

    Figure  15.  Prediction errors of training datasets

    图  16  基于训练集预测误差的MGD模型

    Figure  16.  MGD model based on prediction errors of training datasets

    图  17  训练集数据对应的检测指标值

    Figure  17.  Detection index values of training datasets

    图  18  异常检测阈值选取曲线

    Figure  18.  Curves about threshold selection of anomaly detection

    图  19  过轨道接缝异常测试集预测误差曲线

    Figure  19.  Prediction error curves of track crossing joint anomaly test datasets

    图  20  过轨道接缝异常测试集检测结果

    Figure  20.  Detection result of track crossing joint anomaly test datasets

    图  21  砸轨异常测试集预测误差曲线

    Figure  21.  Prediction error curves of rail smashing anomaly test datasets

    图  22  砸轨异常测试集检测结果

    Figure  22.  Detection result of rail smashing anomaly test datasets

    图  23  加速度信号异常测试集预测误差曲线

    Figure  23.  Prediction error curves of acceleration signal anomaly test datasets

    图  24  加速度信号异常测试集检测结果

    Figure  24.  Detection result of acceleration signal anomaly test datasets

    表  1  常用激活函数及其用途

    Table  1.   Common activation functions and their applications

    激活函数 用途
    Rectified Linear Unit (ReLU) 用于隐藏层神经元输出
    Sigmoid 用于隐藏层神经元输出
    Softmax 用于多分类神经网络输出
    Tanh 用于输入层和输出层
    Linear 用于回归神经网络输出
    下载: 导出CSV

    表  2  LSTM网络结构参数

    Table  2.   LSTM network structure parameters

    参数名称 参数设置
    Batch Size 32
    Epochs 40
    Dropout 0.1
    Look Back 12
    Look Ahead 1
    Number of Hidden Layer 1
    Number of Hidden Layer Unit 80
    损失函数 均方误差
    学习率 0.02
    下载: 导出CSV

    表  3  检测结果说明

    Table  3.   Description of detection result

    检测结果 数据状态
    异常 正常
    异常 真阳性 假阳性
    正常 假阴性 真阴性
    下载: 导出CSV

    表  4  各数据集相关的数据情况

    Table  4.   Data situations of datasets

    数据集类型 正常值数量 异常值数量 合计
    XtgXtaXtc 25 553 0 25 553
    XvgXvaXvc 8 114 0 8 114
    Vg1Va1Vc1 7 834 29 7 863
    Vg2Va2Vc2 1 831 1 310 3 141
    Vg3Va3Vc3 233 91 324
    Tg1Ta1Tc1 6 933 26 6 959
    Tg2Ta2Tc2 766 1 304 2 070
    Tg3Ta3Tc3 283 24 307
    下载: 导出CSV

    表  5  文献[7]中的异常检测方法对3类异常的检测结果

    Table  5.   Detection results of anomaly detection methods in reference [7] for three types of anomalies

    异常类型 异常数量 超球体高斯分布 经验阈值 PCA SVDD
    检测数量 检测率/% 检测数量 检测率/% 检测数量 检测率/% 检测数量 检测率/%
    过轨道接缝异常 32 29 90.6 0 0.0 24 75.0 23 71.9
    砸轨异常 104 104 100.0 104 100.0 104 100.0 104 100.0
    加速度信号异常 41 39 95.1 0 0.0 34 82.9 32 78.0
    下载: 导出CSV

    表  6  本文方法对3类异常的检测率结果

    Table  6.   Detection results of proposed method for three types of anomalies

    异常类型 异常数量 本文方法
    检测数量 检测率/%
    过轨道接缝异常 26 26 100.0
    砸轨异常 1 304 1 300 99.7
    加速度信号异常 24 22 91.7
    下载: 导出CSV
  • [1] 马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009

    MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.009
    [2] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474, 530.

    DENG Zi-gang, LIU Zong-xin, LI Hai-tao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-574, 530. (in Chinese)
    [3] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.006
    [4] 梁潇, 陈峰, 傅庆湘. 160 km·h-1中速磁浮交通系统的关键技术问题[J]. 城市轨道交通研究, 2019, 22(9): 21-26.

    LIANG Xiao, CHEN Feng, FU Qing-xiang. Key technical issues on 160 km·h-1 medium-speed maglev transit system[J]. Urban Mass Transit, 2019, 22(9): 21-26. (in Chinese)
    [5] NASIRI Z R, HEKMATI A. A review of suspension and traction technologies in maglev trains[C]//IEEE. 34th International Power System Conference(PSC). New York: IEEE, 2019: 129-135.
    [6] PHAENKONGNGAM T, CHINNAWONG K, PATUMASUIT N, et al. Reviewing propulsion and levitation system for magnetic levitation train[C]//IEEE. 2021 International Electrical Engineering Congress. New York: IEEE, 2021: 185-188.
    [7] 王平, 梅子, 龙志强. 基于超球体高斯分布的悬浮系统异常检测[J]. 机车电传动, 2021(6): 9-17.

    WANG Ping, MEI Zi, LONG Zhi-qiang. Anomaly detection for suspension systems based on the Gaussian distribution of hyperspheres[J]. Electric Drive for Locomotives, 2021(6): 9-17. (in Chinese)
    [8] 王平, 梅子, 龙志强. 基于改进典型相关分析的中低速悬浮系统异常检测方法[J]. 同济大学学报(自然科学版), 2022, 50(2): 241-252.

    WANG Ping, MEI Zi, LONG Zhi-qiang. Anomaly detection method of middle-low speed suspension system based on improved canonical correlation analysis[J]. Journal of Tongji University (Natural Science), 2022, 50(2): 241-252. (in Chinese)
    [9] 罗建辉, 王平. 基于海林格距离和相关系数的中低速悬浮系统异常检测方法[J]. 铁道科学与工程学报, 2022, 19(10): 3096-3106.

    LUO Jian-hui, WANG Ping. Anomaly detection method of middle-low speed suspension system based on Hellinger distance and correlation coefficient[J]. Journal of Railway Science and Engineering, 2022, 19(10): 3096-3106. (in Chinese)
    [10] ZHANG Yun-zhou, CHAO Chuang, WU Jun, et al. Magnetic anomaly of long track detection method based on wavelet combining with fractal for high speed maglev transit[J]. Measurement and Control, 2022, 55(7/8): 717-728.
    [11] 周旭, 温韬, 龙志强. 基于漏检率的磁浮列车悬浮系统异常检测[J]. 西南交通大学学报, 2023, 58(4): 903-912.

    ZHOU Xu, WEN Tao, LONG Zhi-qiang. Anomaly detection of suspension system in maglev train based on missed detection rate[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 903-912. (in Chinese)
    [12] 龙子凡, 司恩, 罗华军, 等. 一种磁浮列车异常振动监测与诊断方法[J]. 科学技术创新, 2022(10): 21-24.

    LONG Zi-fan, SI En, LUO Hua-jun, et al. A method for monitoring and diagnosing abnormal vibration of maglev train[J]. Scientific and Technological Innovation, 2022(10): 21-24. (in Chinese)
    [13] 吴峻, 李洪鲁, 张雨馨, 等. 中低速磁浮轨道疑似不平顺的Box-Whisker图筛选法[J]. 交通运输工程学报, 2023, 23(3): 68-76. doi: 10.19818/j.cnki.1671-1637.2023.03.004

    WU Jun, LI Hong-lu, ZHANG Yu-xin, et al. Screening method of suspected irregularity for medium-and-low-speed maglev tracks based on Box-Whisker plot[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 68-76. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.03.004
    [14] CHEN Po-yu, YANG Shu-sen, MCCANN J A. Distributed real-time anomaly detection in networked industrial sensing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3832-3842. doi: 10.1109/TIE.2014.2350451
    [15] AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147. doi: 10.1016/j.neucom.2017.04.070
    [16] XIE Kun, LI Xiao-can, WANG Xin, et al. On-line anomaly detection with high accuracy[J]. IEEE/ACM Transactions on Networking, 2018, 26(3): 1222-1235. doi: 10.1109/TNET.2018.2819507
    [17] LUO Jian, HONG Tao, YUE Meng. Real-time anomaly detection for very short-term load forecasting[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 235-243. doi: 10.1007/s40565-017-0351-7
    [18] FISCH A T M, BARDWELL L, ECKLEY I A. Real time anomaly detection and categorisation[J]. Statistics and Computing, 2022, 32(4): 55. doi: 10.1007/s11222-022-10112-3
    [19] ZHOU Yan-jun, REN Huo-rong, LI Zhi-wu, et al. Anomaly detection based on a granular Markov model[J]. Expert Systems with Applications, 2022, 187: 115744. doi: 10.1016/j.eswa.2021.115744
    [20] LIU Sheng-hua, ZHOU Bin, DING Quan, et al. Time series anomaly detection with adversarial reconstruction networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4293-4306. doi: 10.1109/TKDE.2021.3140058
    [21] 王德文, 杨力平. 智能电网大数据流式处理方法与状态监测异常检测[J]. 电力系统自动化, 2016, 40(14): 122-128. doi: 10.7500/AEPS20150828001

    WANG De-wen, YANG Li-ping. Stream processing method and condition monitoring anomaly detection for big data in smart grid[J]. Automation of Electric Power Systems, 2016, 40(14): 122-128. (in Chinese) doi: 10.7500/AEPS20150828001
    [22] 陈兴蜀, 江天宇, 曾雪梅, 等. 基于多维时间序列分析的网络异常检测[J]. 工程科学与技术, 2017, 49(1): 144-150.

    CHEN Xing-shu, JIANG Tian-yu, ZENG Xue-mei, et al. Network anomaly detector based on multiple time series analysis[J]. Advanced Engineering Sciences, 2017, 49(1): 144-150. (in Chinese)
    [23] 李新鹏, 高欣, 阎博, 等. 基于孤立森林算法的电力调度流数据异常检测方法[J]. 电网技术, 2019, 43(4): 1447-1456.

    LI Xin-peng, GAO Xin, YAN Bo, et al. An approach of data anomaly detection in power dispatching streaming data based on isolation forest algorithm[J]. Power System Technology, 2019, 43(4): 1447-1456. (in Chinese)
    [24] 时磊. 基于LSTMs-Autoencoder的流数据异常检测算法[J]. 仪表技术与传感器, 2021(10): 120-125. doi: 10.3969/j.issn.1002-1841.2021.10.024

    SHI Lei. Anomaly detection algorithm in streaming data based on LSTMs-Autoencoder[J]. Instrument Technique and Sensor, 2021(10): 120-125. (in Chinese) doi: 10.3969/j.issn.1002-1841.2021.10.024
    [25] 毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J]. 自动化学报, 2022, 48(1): 302-314.

    MAO Wen-tao, TIAN Si-yu, DOU Zhi, et al. A new deep transfer learning-based online detection method of rolling bearing early fault[J]. Acta Automatica Sinica, 2022, 48(1): 302-314. (in Chinese)
    [26] 陈仲磊, 伊鹏, 陈祥, 等. 基于集成学习的系统调用实时异常检测框架[J]. 计算机工程, 2023, 49(6): 162-169, 179.

    CHEN Zhong-lei, YI Peng, CHEN Xiang, et al. Real-time anomaly detection framework via system calls based on integrated learning[J]. Computer Engineering, 2023, 49(6): 162-169, 179. (in Chinese)
    [27] GUE I H V, UBANDO A T, TSENG M, et al. Artificial neural networks for sustainable development: a critical review[J]. Clean Technologies and Environmental Policy, 2020, 22: 1449-1465. doi: 10.1007/s10098-020-01883-2
    [28] SHARMA S, SHARMA S, ATHAIYA A. Activation functions in neural networks[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 4(12): 310-316.
    [29] SALEHINEJAD H, SANKAR S, BARFETT J, et al. Recent advances in recurrent neural networks[J]. arXiv, 2017, DOI: 10.48550/arXiv.1801.01078.
    [30] YU Yong, SI Xiao-sheng, HU Chang-hua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. doi: 10.1162/neco_a_01199
    [31] LIU Dian-yu, SUN Chuan-le, GAO Jun. Machine learning of log-likelihood functions in global analysis of parton distributions[J]. arXiv, 2022, DOI: 10.48550/arXiv.2201.06586.
    [32] DING Mei-mei, TIAN Hui. PCA-based network traffic anomaly detection[J]. Tsinghua Science and Technology, 2016, 21(5): 500-509.
    [33] 杨敏, 张焕国, 傅建明, 等. 基于支持向量数据描述的异常检测方法[J]. 计算机工程, 2005, 31(3): 39-42.

    YANG Min, ZHANG Huan-guo, FU Jian-ming, et al. Anomaly intrusion detection method based on SVDD[J]. Computer Engineering, 2005, 31(3): 39-42. (in Chinese)
  • 加载中
图(24) / 表(6)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  15
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回