留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向三车道高速公路合流区智能网联车辆协同汇入控制

王正武 潘军良 陈涛 滑肖月

王正武, 潘军良, 陈涛, 滑肖月. 单向三车道高速公路合流区智能网联车辆协同汇入控制[J]. 交通运输工程学报, 2023, 23(6): 270-282. doi: 10.19818/j.cnki.1671-1637.2023.06.018
引用本文: 王正武, 潘军良, 陈涛, 滑肖月. 单向三车道高速公路合流区智能网联车辆协同汇入控制[J]. 交通运输工程学报, 2023, 23(6): 270-282. doi: 10.19818/j.cnki.1671-1637.2023.06.018
WANG Zheng-wu, PAN Jun-liang, CHEN Tao, HUA Xiao-yue. Cooperative merging control of connected and automated vehicles in merging area for one-way three-lane freeway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 270-282. doi: 10.19818/j.cnki.1671-1637.2023.06.018
Citation: WANG Zheng-wu, PAN Jun-liang, CHEN Tao, HUA Xiao-yue. Cooperative merging control of connected and automated vehicles in merging area for one-way three-lane freeway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 270-282. doi: 10.19818/j.cnki.1671-1637.2023.06.018

单向三车道高速公路合流区智能网联车辆协同汇入控制

doi: 10.19818/j.cnki.1671-1637.2023.06.018
基金项目: 

国家自然科学基金项目 52372296

湖南省自然科学基金项目 2023JJ30039

湖南省交通运输厅科技进步与创新项目 202140

湖南省研究生科研创新项目 CX20220862

长沙市科技计划项目 kh2301004

详细信息
    作者简介:

    王正武(1973-),男,湖南宁乡人,长沙理工大学教授,工学博士,从事智能交通车路协同研究

    通讯作者:

    陈涛(1994-),男,湖南永州人,长沙理工大学工学博士研究生

  • 中图分类号: U491.54

Cooperative merging control of connected and automated vehicles in merging area for one-way three-lane freeway

Funds: 

National Natural Science Foundation of China 52372296

Natural Science Foundation of Hunan Province 2023JJ30039

Science and Technology Progress and Innovation Project of Department of Transportation of Hunan Province 202140

Postgraduate Scientific Research Innovation Project of Hunan Province CX20220862

Science and Technology Planning Project of Changsha kh2301004

More Information
  • 摘要: 为提高多车道高速公路入口匝道智能网联车辆合流安全性与通行效率,提出了一种基于规则的换道策略和一个时间离散的车辆轨迹优化模型,以进行协同汇入控制;以普通单向三车道高速公路匝道合流区为研究对象,将合流区及其上下游路段划分为4个区域,并对关键的提前换道区和协同合流区分别进行交通控制;在上游提前换道区,基于最小安全跟车间距和速度效益的换道规则,将部分主线外侧车道、中间车道的车辆在合流区上游提前换道至内侧相邻车道,以此减轻合流区外侧车道的交通压力,提高合流效率;在下游协同合流区,选取合适的周期时长,以周期内合流车辆行驶速度最大为目标,不固定合流点,规划合流车辆的纵向行车轨迹,引导匝道车辆在周期结束后汇入主线,实现协同合流;利用SUMO和Python仿真验证提出的协同汇入控制方法,并进行临界跟驰车头间距的敏感性分析。仿真结果表明:与无控制自然合流相比,提出的协同汇入控制方法在不同的交通需求水平下能使车辆平均速度提高4.9%~21.1%,平均延误降低29.9%~56.5%,且不会出现停车现象;与先进先出合流控制相比,在高匝道交通需求水平下能使车辆平均速度提高3.4%~9.6%,平均延误降低22.9%~39.4%;较低的临界跟驰车头间距可以更好地提高合流区通行效率,且在主线交通需求水平较高时更明显。

     

  • 图  1  单向三车道高速公路协同合流场景

    Figure  1.  Cooperative merging Scenarios of one-way three-lane freeway

    图  2  主线车辆行驶位置

    Figure  2.  Driving positions of mainline vehicles

    图  3  主线车辆换道流程

    Figure  3.  Lane changing flow of mainline vehicles

    图  4  仿真路网

    Figure  4.  Simulated road network

    图  5  仿真流程

    Figure  5.  Simulation flow

    图  6  合流车辆初始位置

    Figure  6.  Initial positions of merging vehicles

    图  7  合流车辆轨迹优化结果

    Figure  7.  Results of trajectory optimization of merging vehicles

    图  8  不同主线交通需求水平下车辆平均速度对比

    Figure  8.  Comparison of average speeds of vehicles under different mainline traffic demand levels

    图  9  不同主线交通需求水平下车辆平均延误对比

    Figure  9.  Comparison of average delays of vehicles under different mainline traffic demand levels

    图  10  不同的临界跟驰车头间距下车辆平均速度对比

    Figure  10.  Comparison of average speeds of vehicles under different critical car-following headways

    图  11  不同的临界跟驰车头间距下车辆平均延误对比

    Figure  11.  Comparison of average delays of vehicles under different critical car-following headways

    表  1  仿真试验参数

    Table  1.   Simulated experimental parameters

    参数 数值 参数 数值
    t0/s 1.2 vr_max/(m·s-1) 16.7
    s0/m 2 amax/(m·s-2) 5
    L/m 5 amin/(m·s-2) -5
    H1/m 200 Amax/(m·s-2) 3
    H2/m 300 Dmin/m 8
    H3/m 300 Δk/s 1
    H4/m 200 T/s 6
    vm_max/(m·s-1) 25
    下载: 导出CSV

    表  2  不同交通需求水平下车辆平均速度对比

    Table  2.   Comparison of average speeds of vehicles under different traffic demand levels  km·h-1

    匝道交通量/(veh·h-1) 控制方式 主线交通量/(veh·h-1)
    800 1 200 1 600 2 000
    600 无控制 77.40 74.85 70.99 69.37
    仅轨迹优化控制 78.88(+1.9%) 76.43(+2.1%) 75.13(+5.8%) 74.48(+7.4%)
    协同汇入控制 80.10(+3.5%) 77.72(+3.8%) 76.24(+7.4%) 75.76(+9.2%)
    800 无控制 75.56 72.07 68.65 65.12
    仅轨迹优化控制 77.47(+2.5%) 76.01(+5.5%) 75.02(+9.3%) 74.45(+14.3%)
    协同汇入控制 79.07(+4.6%) 77.68(+7.8%) 76.18(+11.0%) 75.59(+16.1%)
    1 000 无控制 73.44 71.24 67.00 64.30
    仅轨迹优化控制 77.25(+5.2%) 75.28(+5.7%) 74.27(+10.8%) 73.84(+14.8%)
    协同汇入控制 78.90(+7.4%) 77.60(+8.9%) 75.94(+13.3%) 75.43(+17.3%)
    1 200 无控制 71.50 69.84 64.73 55.01
    仅轨迹优化控制 76.86(+7.5%) 75.05(+7.5%) 73.26(+13.2%) 71.49(+30.0%)
    协同汇入控制 78.26(+9.5%) 77.30(+10.7%) 75.68(+16.9%) 75.19(+36.7%)
    下载: 导出CSV

    表  3  不同交通需求水平下车辆平均延误对比

    Table  3.   Comparison of average delays of vehicles under different traffic demand levels s·veh-1

    匝道交通量/(veh·h-1) 控制方式 主线交通量/(veh·h-1)
    800 1 200 1 600 2 000
    600 无控制 1.44 2.02 2.70 3.05
    仅轨迹优化控制 1.27(-11.8%) 1.68(-16.8%) 1.98(-26.7%) 2.08(-31.8%)
    协同汇入控制 1.10(-23.6%) 1.44(-28.7%) 1.76(-34.8%) 1.87(-38.7%)
    800 无控制 1.77 2.43 3.22 4.10
    仅轨迹优化控制 1.54(-13.0%) 1.80(-25.9%) 1.99(-38.2%) 2.11(-48.5%)
    协同汇入控制 1.27(-28.2%) 1.48(-39.1%) 1.77(-45.0%) 1.91(-53.4%)
    1 000 无控制 2.20 2.63 3.61 4.30
    仅轨迹优化控制 1.56(-29.1%) 1.93(-26.6%) 2.13(-41.0%) 2.21(-48.6%)
    协同汇入控制 1.31(-40.4%) 1.52(-42.2%) 1.84(-49.0%) 1.93(-55.1%)
    1 200 无控制 2.60 2.93 4.17 5.89
    仅轨迹优化控制 1.65(-36.5%) 1.94(-33.8%) 2.30(-44.8%) 2.58(-56.2%)
    协同汇入控制 1.45(-44.2%) 1.59(-45.7%) 1.88(-54.9%) 1.95(-66.9%)
    下载: 导出CSV

    表  4  不同交通需求水平下车辆总停车次数对比

    Table  4.   Comparison of total stops of vehicles under different traffic demand levels

    匝道交通量/(veh·h-1) 控制方式 主线交通量/(veh·h-1)
    800 1 200 1 600 2 000
    600 无控制 0 0 0 0
    仅轨迹优化 0 0 0 0
    协同汇入控制 0 0 0 0
    800 无控制 0 0 2 9
    仅轨迹优化 0 0 0 0
    协同汇入控制 0 0 0 0
    1 000 无控制 0 0 5 24
    仅轨迹优化 0 0 0 0
    协同汇入控制 0 0 0 0
    1 200 无控制 0 4 10 68
    仅轨迹优化 0 0 0 3
    协同汇入控制 0 0 0 0
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1-161.

    Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese)
    [2] 郭延永, 刘佩, 袁泉, 等. 网联自动驾驶车辆道路交通安全研究综述[J]. 交通运输工程学报, 2023, 23(5): 19-38. doi: 10.19818/j.cnki.1671-1637.2023.03.018

    GUO Yan-yong, LIU Pei, YUAN Quan, et al. Review on research of road traffic safety of connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 19-38. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.03.018
    [3] PAPAGEORGIOU M, HADJ-SALEM H, MIDDELHAM F. ALINEA local ramp metering: summary of field results[J]. Transportation Research Record, 1997, 1603(1): 90-98. doi: 10.3141/1603-12
    [4] SUN X, HOROWITZ R. A localized switching ramp-metering controller with a queue length regulator for congested freeways[C]//IEEE. 2005 American Control Conference. New York: IEEE, 2005: 2141-2146.
    [5] WU J, MCDONALD M, CHATTERJEE K. A detailed evaluation of ramp metering impacts on driver behaviour[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2007, 10(1): 61-75. doi: 10.1016/j.trf.2006.06.003
    [6] LIN P, KANG K, CHANG G. Exploring the effectiveness of variable speed limit controls on highway work-zone operations[J]. Journal of Intelligent Transportation Systems, 2004, 8(3): 155-168. doi: 10.1080/15472450490492851
    [7] ABDEL-ATY M, DILMORE J, DHINDSA A. Evaluation of variable speed limits for real-time freeway safety improvement[J]. Accident Analysis and Prevention, 2006, 38(2): 335-345. doi: 10.1016/j.aap.2005.10.010
    [8] 李志斌, 金茂菁, 刘攀, 等. 提高高速公路通行效率的可变限速控制策略[J]. 吉林大学学报(工学版), 2013, 43(5): 1204-1209.

    LI Zhi-bin, JIN Mao-jing, LIU Pan, et al. Evaluation of impact variable speed limits on improving traffic efficiency on freeways[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(5): 1204-1209. (in Chinese)
    [9] XU Ling-hui, LU Jia, RAN Bin, et al. Cooperative merging strategy for connected vehicles at highway on-ramps[J]. Journal of Transportation Engineering, Part A: Systems, 2019, 145(6): 04019022. doi: 10.1061/JTEPBS.0000243
    [10] MIN Hai-gen, FANG Yu-kun, WU Xia, et al. On-ramp merging strategy for connected and automated vehicles based on complete information static game[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(4): 582-595. doi: 10.1016/j.jtte.2021.07.003
    [11] LOZANO DOMÍNGUEZ J M, MATEO SANGUINO T J. Review on V2X, I2X, and P2X communications and their applications: a comprehensive analysis over time[J]. Sensors, 2019, 19(12): 2756. doi: 10.3390/s19122756
    [12] MARINESCU D, AČG URN J, BOUROCHE M, et al. On-ramp traffic merging using cooperative intelligent vehicles: a slot-based approach[C]//IEEE. 2012 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 900-906.
    [13] PARK H, BHAMIDIPATI C S, SMITH B L. Development and evaluation of enhanced intellidrive-enabled lane changing advisory algorithm to address freeway merge conflict[J]. Transportation Research Record, 2011, 2243(1): 146-157. doi: 10.3141/2243-17
    [14] KARBALAIEALI S, OSMAN O A, ISHAK S. A dynamic adaptive algorithm for merging into platoons in connected automated environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4111-4122. doi: 10.1109/TITS.2019.2938728
    [15] DING J, LI L, PENG H, et al. A rule-based cooperative merging strategy for connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3436-3446. doi: 10.1109/TITS.2019.2928969
    [16] 高志军, 王江锋, 陈磊, 等. 基于智能网联车辆编队的高速公路协同合流控制方法[J]. 东南大学学报(自然科学版), 2022, 52(2): 335-343.

    GAO Zhi-Jun, WANG Jiang-feng, CHEN Lei, et al. Cooperative merging control on freeway based on platooning of connected and automated vehicles[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 335-343. (in Chinese)
    [17] 杨敏, 王立超, 张健, 等. 面向智慧高速的合流区协作车辆冲突解脱协调方法[J]. 交通运输工程学报, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020

    YANG Min, WANG Li-chao, ZHANG Jian, et al. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.020
    [18] HANG Peng, LYU Chen, HUANG Chao, et al. Cooperative decision making of connected automated vehicles at multi-lane merging zone: a coalitional game approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3829-3841. doi: 10.1109/TITS.2021.3069463
    [19] 郝威, 龚雅馨, 张兆磊, 等. 面向高速公路混合交通流的车辆协同合流策略[J]. 交通运输系统工程与信息, 2023, 23(1): 224-235.

    HAO Wei, GONG Ya-Xin, ZHANG Zhao-lei, et al. Cooperative merging strategy for freeway ramp in a mixed traffic environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 224-235. (in Chinese)
    [20] RIOS-TORRES J, MALIKOPOULOS A, PISU P. Online optimal control of connected vehicles for efficient traffic flow at merging roads[C]//IEEE. 2015 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2432-2437.
    [21] LETTER C, ELEFTERIADOU L. Efficient control of fully automated connected vehicles at freeway merge segments[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 190-205. doi: 10.1016/j.trc.2017.04.015
    [22] HU X, SUN J. Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 111-125. doi: 10.1016/j.trc.2019.02.016
    [23] 刘畅, 庄伟超, 殷国栋, 等. 高速匝道入口多智能网联车协同合流控制[J]. 东南大学学报(自然科学版), 2020, 50(5): 965-972.

    LIU Chang, ZHUANG Wei-chao, YIN Guo-dong, et al. Cooperative merging control of multiple connected and automated vehicles on freeway ramp[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 965-972. (in Chinese)
    [24] 江浩斌, 胡子牛, 刘擎超, 等. 智能网联汽车中心式匝道合流协同控制[J]. 湖南大学学报(自然科学版), 2021, 48(4): 159-170.

    JIANG Hao-bin, HU Zi-niu, LIU Qing-chao, et al. Centralized coordinated ramp merging control for intelligent and connected vehicles[J]. Journal of Hunan University(Natural Sciences), 2021, 48(4): 159-170. (in Chinese)
    [25] 王秋玲, 赵祥模, 徐志刚, 等. 特种CAV优先的集中式匝道合流协同控制方法[J]. 交通运输工程学报, 2022, 22(1): 263-272. doi: 10.19818/j.cnki.1671-1637.2022.01.022

    WANG Qiu-ling, ZHAO Xiang-mo, XU Zhi-gang, et al. Centralized ramp confluence cooperative control method with special connected and automated vehicle priority[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 263-272. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.022
    [26] DING Heng, DI Yun-ran, ZHENG Xiao-yan, et al. Automated cooperative control of multilane freeway merging areas in connected and autonomous vehicle environments[J]. Transportmetrica B: Transport Dynamics, 2021, 9(1): 437-455. doi: 10.1080/21680566.2021.1887774
    [27] SHI Yan-jun, YU Hao, GUO Yi-jia, et al. A collaborative merging strategy with lane changing in multilane freeway on-ramp area with V2X network[J]. Future Internet, 2021, 13(5): 123. doi: 10.3390/fi13050123
    [28] WANG Z, WU G, BARTH M. Distributed consensus-based cooperative highway on-ramp merging using V2X communications[C]//SAE International. 2018 SAE World Congress Experience. Warrendale: SAE International, 2018: 1-9.
    [29] ERDMANN J. SUMO's lane-changing model[C]//Springer. 2014 2nd SUMO Conference. Berlin: Springer, 2015: 105-123.
    [30] XIE Yuan-chang, ZHANG Hui-xing, GARTNER N H, et al. Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment[J]. Journal of Intelligent Transportation Systems, 2017, 21(2): 136-147. doi: 10.1080/15472450.2016.1248288
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  87
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回